Learn More
—This paper investigates the use of fuzzy logic for fault detection and diagnosis in a pulsewidth modulation voltage source inverter (PWM-VSI) induction motor drive. The proposed fuzzy technique requires the measurement of the output inverter currents to detect intermittent loss of firing pulses in the inverter power switches. For diagnosis purposes, a(More)
—This paper presents system modeling, analysis, and simulation of an electric vehicle (EV) with two independent rear wheel drives. The traction control system is designed to guarantee the EV dynamics and stability when there are no differential gears. Using two in-wheel electric motors makes it possible to have torque and speed control in each wheel. This(More)
—This paper describes a fault-tolerant control system for a high-performance induction motor drive that propels an electrical vehicle (EV) or hybrid electric vehicle (HEV). In the proposed control scheme, the developed system takes into account the controller transition smoothness in the event of sensor failure. Moreover, due to the EV or HEV requirements(More)
—This paper describes a comparative study allowing the selection of the most appropriate electric propulsion system for a parallel Hybrid Electric Vehicle (HEV). This study is based on an exhaustive review of the state of the art and on an effective comparison of the performances of the four main electric propulsion systems that are the dc motor, the(More)
—This paper proposes a strategy to minimize the losses of an induction motor propelling and Electric Vehicle (EV). The proposed control strategy, based on a Direct Flux and Torque Control (DTC) scheme, utilizes the stator flux as control variable and the flux level is selected in accordance with torque demand of the EV to achieve the efficiency optimized(More)