Learn More
BACKGROUND Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR) defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF). Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (V(TE)) to assess ionic transport is a powerful test(More)
DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency.(More)
RATIONALE Nonsense (premature stop codon) mutations in mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF) in approximately 10% of patients. Ataluren (PTC124) is an oral drug that permits ribosomes to readthrough premature stop codons in mRNA to produce functional protein. OBJECTIVES To evaluate ataluren(More)
RATIONALE Cystic fibrosis transmembrane conductance regulator (CFTR) protein is a chloride channel regulating fluid homeostasis at epithelial surfaces. Its loss of function induces hypohydration, mucus accumulation, and bacterial infections in CF and potentially other lung chronic diseases. OBJECTIVES To test whether neutrophil elastase (NE) and(More)
Diffuse bronchiectasis is a common problem in respiratory clinics. We hypothesized that mutations in the solute carrier 26A9 (SLC26A9) gene, encoding for a chloride (Cl(-)) transporter mainly expressed in lungs, may lead to defects in mucociliary clearance. We describe two missense variants in the SLC26A9 gene in heterozygote patients presenting with(More)
Neuroglobin is a member of the globin superfamily proposed to be only expressed in neurons and involved in neuronal protection from hypoxia or oxidative stress. A significant fraction of the protein localizes within the mitochondria and is directly associated with mitochondrial metabolism and integrity. The retina is the site of the highest concentration(More)
BACKGROUND Cystic fibrosis (CF) is caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR) protein, which acts as a chloride channel after activation by cyclic AMP (cAMP). Newborn screening programs for CF usually consist of an immunoreactive trypsinogen (IRT) assay, followed when IRT is elevated by testing for a panel(More)
BACKGROUND A challenging problem arising from cystic fibrosis (CF) newborn screening is the significant number of infants with hypertrypsinaemia (HIRT) with sweat chloride levels in the intermediate range and only one or no identified CF-causing mutations. OBJECTIVES To investigate the diagnostic value for CF of assessing CF transmembrane conductance(More)
RATIONALE The diagnosis of cystic fibrosis (CF) is based on a characteristic clinical picture in association with a sweat chloride (Cl(-)) concentration greater than 60 mmol/L or the identification of two CF-causing mutations. A challenging problem is the significant number of children for whom no definitive diagnosis is possible because they present with(More)
Neuroglobin (NGB) is considered as an endogenous neuroprotective molecule against stroke, since the protein alleviates the adverse effects of hypoxic and ischemic insults. We previously demonstrated the functional link between NGB and mitochondria since it is required for respiratory chain function. Thus, here, we evaluated the relevance of this effect in(More)