Learn More
The biphasic material properties for nucleus pulposus tissue in confined compression have not been reported previously, and are required for a better understanding of intervertebral disc function and to provide material properties for use in finite-element models. The aims of this study were to determine linear and non-linear material properties for nucleus(More)
STUDY DESIGN To analyze Boston brace biomechanics, pressure measurements and finite element simulations were done on 12 adolescent idiopathic scoliosis patients. OBJECTIVES The aim was to analyze the Boston brace effectiveness using a finite element model and experimental measurements. SUMMARY OF BACKGROUND DATA There are not very many biomechanical(More)
As part of the development of new modelling tools for the simulation and design of brace treatment of scoliosis, a finite element model of a brace and its interface with the torso was proposed. The model was adapted to represent one scoliotic adolescent girl treated with a Boston brace. The 3D geometry was acquired using multiview radiographs. The model(More)
OBJECTIVES To analyse patient-specific bracing biomechanics in the treatment of scoliosis. DESIGN Two complementary computer tools have been developed to quantify the brace action on scoliotic spine from pressure measurements, and to simulate its effect on patient-adapted finite element model. BACKGROUND Brace pad forces and brace effect on spine(More)
OBJECTIVES The aim was to quantify the immediate effect of the Cheneau-Toulouse-Munster brace (worn at night) on scoliotic curvatures in vivo.Design. A three-dimensional geometrical model of the spine was developed using magnetic resonance images. BACKGROUND Many corrective ortheses were proposed for the orthopaedic treatment of idiopathic scoliosis.(More)
Electromagnetic motion tracking devices are increasingly used as a kinematic measuring tool. The aim of this study was to evaluate a long-range transmitter in an environment with a conventional force plate present in order to assess its suitability for further biomechanical applications. Using a calibration apparatus developed in our lab and Optotrack(More)
The lack of standardization in experimental protocols for unconfined compression tests of intervertebral discs (IVD) tissues is a major issue in the quantification of their mechanical properties. Our hypothesis is that the experimental protocols influence the mechanical properties of both annulus fibrosus and nucleus pulposus. IVD extracted from bovine(More)
Aging and degeneration of the intervertebral disk are accompanied by decreases in water and proteoglycan contents, and structural alterations. The aim of this study was to determine the impact of compositional changes on the material properties of intervertebral disk tissues. Confined compression stress-relaxation experiments were applied to bovine caudal(More)
The aim of the study was to investigate the mechanisms of the Cheneau-Toulouse-Munster (CTM) brace in the correction of scoliotic curves, at night in the supine position. Magnetic resonance imaging (MRI) and Computer tomography (CT) acquisitions were performed in vivo on eight girls having an idiopathic scoliosis and being treated for the first time using a(More)
BACKGROUND Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal pathology and(More)