Learn More
The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive(More)
Basal bodies are tightly controlled not only for their time of duplication but also for their movements, which ensure proper division and morphogenesis. However, the mechanisms underlying these movements only begin to be explored. We describe here a novel basal body appendage in Paramecium, the anterior left filament (ALF), which develops transiently from(More)
Basal bodies which nucleate cilia and flagella, and centrioles which organize centrosomes share the same architecture characterized by the ninefold symmetry of their microtubular shaft. Among the conserved proteins involved in the biogenesis of the canonical 9-triplet centriolar structures, Sas-6 and Bld10 proteins have been shown to play central roles in(More)
In addition to their key role in the duplication of microtubule organising centres (MTOCs), centrins are major constituents of diverse MTOC-associated contractile arrays. A centrin partner, Sfi1p, has been characterised in yeast as a large protein carrying multiple centrin-binding sites, suggesting a model for centrin-mediated Ca2+-induced contractility and(More)
The previous characterization and structural analyses of Sfi1p, a Saccharomyces cerevisiae centrin-binding protein essential for spindle pole body duplication, have suggested molecular models to account for centrin-mediated, Ca2+-dependent contractility processes (S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams, and J. V. Kilmartin, J.(More)
Centrioles and basal bodies are MT based structures that present a highly conserved ninefold symmetry. Centrioles can be found at the core of the centrosome where they participate in PCM recruitment and organization, contributing to cytoplasmic MT nucleation. Basal bodies are normally located closely to the plasma membrane where they are responsible for(More)
Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by(More)
Centrosome amplification has severe consequences during development and is thought to contribute to a variety of diseases such as cancer and microcephaly. However, the adverse effects of centrosome amplification in epithelia are still not known. Here, we investigate the consequences of centrosome amplification in the Drosophila wing disc epithelium. We(More)
Cilia and flagella are organelles essential for motility and sensing of environmental stimuli. Depending on the cell type, cilia acquire a defined set of functions and, accordingly, are built with an appropriate length and molecular composition. Several ciliary proteins display a high degree of conservation throughout evolution and mutations in ciliary(More)
In Paramecium tetraurelia, the regulated secretory pathway of dense core granules called trichocysts can be altered by mutation and genetically studied. Seventeen nondischarge (ND) genes controlling exocytosis have already been identified by a genetic approach. The site of action of the studied mutations is one of the three compartments, the cytosol,(More)