Learn More
Decoding of UGA selenocysteine codons in eubacteria is mediated by the specialized elongation factor SelB, which conveys the charged tRNA(Sec) to the A site of the ribosome, through binding to the SECIS mRNA hairpin. In an attempt to isolate the eukaryotic homolog of SelB, a database search in this work identified a mouse expressed sequence tag containing(More)
Decoding of the UGA selenocysteine codon for selenoprotein translation requires the SECIS element, a stem-loop motif in the 3'-UTR of the mRNA carrying short or large apical loops. In previous structural studies, we derived a secondary structure model for SECIS RNAs with short apical loops. Work from others proposed that intra-apical loop base pairing can(More)
A new class of small RNAs (endo-siRNAs) produced from endogenous double-stranded RNA (dsRNA) precursors was recently shown to mediate transposable element (TE) silencing in the Drosophila soma. These endo-siRNAs might play a role in heterochromatin formation, as has been shown in S. pombe for siRNAs derived from repetitive sequences in chromosome(More)
Drosophila Gcn5 is the catalytic subunit of the SAGA and ATAC histone acetylase complexes. Here, we show that mutations in Gcn5 and the ATAC component Ada2a induce a decondensation of the male X chromosome, similar to that induced by mutations in the Iswi and Nurf301 subunits of the NURF nucleosome remodelling complex. Genetic studies as well as transcript(More)
The amino acid selenocysteine represents the major biological form of selenium. Both the synthesis of selenocysteine and its co-translational incorporation into selenoproteins in response to an in-frame UGA codon, require a complex molecular machinery. To decode the UGA Sec codon in eubacteria, this machinery comprises the tRNASec, the specialized(More)
In eukaryotes, translation of internal UGA selenocysteine codons requires the SECIS stem-loop structure in the 3'UTR of selenoprotein mRNAs. In an earlier work, we identified SBP as a selenocysteine insertion sequence (SECIS)-binding protein. Here, the yeast three-hybrid screen was employed to capture the cDNA of SBP. One candidate, satisfying the genetic(More)
The last ten years have seen a dramatic increase in our understanding of the molecular mechanism allowing specific incorporation of selenocysteine into selenoproteins. Whether in prokaryotes or eukaryotes, this incorporation requires several gene products, among which the specialized elongation factor SelB and the tRNA(Sec) play a pivotal role. While the(More)
  • 1