Delphine Chadefaux

Learn More
This paper describes results about the development of a repeatable and configurable robotic finger designed to pluck harp strings. Eventually, this device will be a tool to study string instruments in playing conditions. We use a classical robot with two degrees of freedom enhanced with silicone fingertips. The validation method requires a comparison with(More)
This paper describes an experimental study of string plucking for the classical harp. Its goal is to characterize the playing parameters that play the most important roles in expressivity, and in the way harp players recognize each other, even on isolated notes--what we call the "acoustical signature" of each player. We have designed a specific experimental(More)
In this paper, a model of the harp plucking is developed. It is split into two successive time phases, the sticking and the slipping phases, and uses a mechanical description of the human finger's behavior. The parameters of the model are identified through measurements of the finger/string displacements during the interaction. The validity of the model is(More)
This paper investigates how tennis players control stroke-induced vibration. Its aim is to characterise how a tennis player deals with entering vibration waves or how he/she has the ability to finely adjust them. A specific experimental procedure was designed, based on simultaneously collecting sets of kinematic, vibration and electromyographic data during(More)
The aim of this article is to characterise the extent to which the dynamic behaviour of a tennis racket is dependent on its mechanical characteristics and the modulation of the player's grip force. This problem is addressed through steps involving both experiment and modelling. The first step was a free boundary condition modal analysis on five commercial(More)
  • 1