Delphine Bouchet

Learn More
In the nucleus accumbens (NAc), a key structure to the effects of all addictive drugs, presynaptic cannabinoid CB1 receptors (CB1Rs) and postsynaptic metabotropic glutamate 5 receptors (mGluR5s) are the principal effectors of endocannabinoid (eCB)-mediated retrograde long-term depression (LTD) (eCB-LTD) at the prefrontal cortex-NAc synapses. Both CB1R and(More)
Autoimmune synaptic encephalitides are recently described human brain diseases leading to psychiatric and neurological syndromes through inappropriate brain-autoantibody interactions. The most frequent synaptic autoimmune encephalitis is associated with autoantibodies against extracellular domains of the glutamatergic N-methyl-d-aspartate receptor, with(More)
Dopamine is a powerful modulator of glutamatergic neurotransmission and NMDA receptor-dependent synaptic plasticity. Although several intracellular cascades participating in this functional dialogue have been identified over the last few decades, the molecular crosstalk between surface dopamine and glutamate NMDA receptor (NMDAR) signaling still remains(More)
The hallmark of chronic rejection is the occlusion of the artery lumen by intima hyperplasia as a consequence of leukocyte infiltration and vascular smooth muscle cell (VSMC) migration and proliferation. Heme oxygenase-1 (HO-1) is a tissue protective molecule which degrades heme into carbon monoxide (CO), free iron and biliverdin. We analyzed the effects of(More)
Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly(More)
NMDA-type glutamate receptors (NMDAR) are central actors in the plasticity of excitatory synapses. During adaptive processes, the number and composition of synaptic NMDAR can be rapidly modified, as in neonatal hippocampal synapses where a switch from predominant GluN2B- to GluN2A-containing receptors is observed after the induction of long-term(More)
The relative content of NR2 subunits in the NMDA receptor confers specific signaling properties and plasticity to synapses. However, the mechanisms that dynamically govern the retention of synaptic NMDARs, in particular 2A-NMDARs, remain poorly understood. Here, we investigate the dynamic interaction between NR2 C termini and proteins containing(More)
Elevated expression of heme oxygenase-1 (HO-1), an intracellular enzyme that degrades heme into carbon monoxide (CO), biliverdine and free iron, has anti-inflammatory and antiapoptotic effects in diverse models. Here, we analyzed the effects of specific overexpression of HO-1 following adenovirus-mediated (AdHO-1) gene transfer in an acute cardiac allograft(More)
Transplantation offers a unique opportunity for gene transfer into allografts before grafting. After organ retrieval, the cold ischemic period renders organs available for manipulation and gene transfer. Local expression of protective or immunomodulatory molecules within the graft environment offers a better local bioavailability of bioreagents and(More)
Heme oxygenase-1 (HO-1) expression protects cells from a variety of cellular insults and inhibits inflammation. However, its role in the regulation of immune responses has not yet been clearly established. We generated HO-1 transgenic rats to directly test the impact of HO-1 on the different immune mechanisms. To temporally control the expression of HO-1,(More)