Learn More
For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap(More)
The survival of terrestrial plants depends upon the capacity of roots to obtain water and nutrients from the soil. Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. Even though the lack of sufficient water is the single-most important factor affecting(More)
While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients,(More)
Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis(More)
The survival of terrestrial plants depends upon the capacity of roots to obtain water and nutrients from the soil. Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. Even though the lack of sufficient water is the single-most important factor affecting(More)
Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this(More)
Roots of most terrestrial plants show hydrotropic curvature when exposed to a moisture gradient. Though this root response is difficult to visualize in the soil habitat, there are reports of hydrotropism as an inherent response of primary roots of different plant species, such as Arabidopsis thaliana, Pisum sativum, and Zea mays L., from in vitro system(More)
Factors that affect the direction of root growth in response to environmental signals influence crop productivity. We analyzed the root tropic responses of thioredoxin (trxs), thigmotropic (wav2-1), and hydrotropic (ahr1 and nhr1) Arabidopsis thaliana mutants treated with low concentrations of paraquat (PQ), which induces mild oxidative stress, and(More)
  • 1