Deirdre Morris

Learn More
—There is a need for wearable sensors to assess physiological signals and body kinematics during exercise. Such sensors need to be straightforward to use, and ideally the complete system integrated fully within a garment. This would allow wearers to monitor their progress as they undergo an exercise training programme without the need to attach external(More)
We report a new easier method for the quantitative analysis of sodium in human sweat. To the best of our knowledge this is the first time this has been done successfully in a real-time manner. We consolidate sweat stimulation, collection and analysis functions into a single method. This temporal data opens up new possibilities in the study of human(More)
This paper details the development of a textile based fluid handling system with integrated wireless biochemical sensors. Such research represents a new advancement in the area of wearable technologies. The system contains pH, sodium and conductivity sensors. It has been demonstrated during on-body trials that the pH sensor has close agreement with(More)
— Sweat analysis can provide a valuable insight into a person's well-being. Here we present wearable textile-based sensors that can provide real-time information regarding sweat activity. A pH sensitive dye incorporated into a fabric fluidic system is used to determine sweat pH. To detect the onset of sweat activity a sweat rate sensor is incorporated into(More)
— A wearable fluid handling platform based on polyamide lycra ® has been developed for non-invasive, real-time biochemical analysis of bodily fluids. Main challenges include sample collection and delivery, sensor integration and waste sample handling. The system is able to collect sweat as it is expired through the skin and transports it through a channel(More)
  • 1