Learn More
Ligand-induced conformational changes of plasma membrane receptors initiate signals that enable cells to respond to discrete extracellular cues. In response to extracellular amino acids, the yeast Ssy1-Ptr3-Ssy5 sensor triggers the endoproteolytic processing of transcription factors Stp1 and Stp2 to induce amino acid uptake. Activation of the processing(More)
Regulated proteolysis serves as a mechanism to control cellular processes. The SPS (Ssy1-Ptr3-Ssy5) sensor in yeast responds to extracellular amino acids by endoproteolytically activating transcription factors Stp1 and Stp2 (Stp1/2). The processing endoprotease Ssy5 is regulated via proteasomal degradation of its noncovalently associated N-terminal(More)
The Ssy1-Ptr3-Ssy5 (SPS)-sensing pathway enables yeast to respond to extracellular amino acids. Stp1, the effector transcription factor, is synthesized as a latent cytoplasmic precursor with an N-terminal regulatory domain that restricts its nuclear accumulation. The negative regulatory mechanisms impinging on the N-terminal domain are poorly understood.(More)
Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide(More)
  • 1