Deepti Barnawal

Learn More
Brahmi (Bacopa monnieri), an integral component of Indian Ayurvedic medicine system, is facing a threat of extinction owing to the depletion of its natural populations. The present study investigates the prospective of exploitation of halotolerant plant growth promoting rhizobacteria (PGPR) in utilising the salt stressed soils for cultivation of B.(More)
Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting(More)
Plant growth promoting rhizobacteria (PGPR) hold promising future for sustainable agriculture. Here, we demonstrate a carotenoid producing halotolerant PGPR Dietzia natronolimnaea STR1 protecting wheat plants from salt stress by modulating the transcriptional machinery responsible for salinity tolerance in plants. The expression studies confirmed the(More)
This study was aimed at protecting Trigonella plants by reducing stress ethylene levels through ACC (1-aminocyclopropane-1-carboxylic acid) deaminase-containing Bacillus subtilis (LDR2) and promoting plant growth through improved colonization of beneficial microbes like Ensifer meliloti (Em) and Rhizophagus irregularis (Ri) under drought stress. A plant(More)
Induction of stress ethylene production in the plant system is one of the consequences of salt stress which apart from being toxic to the plant also inhibits mycorrhizal colonization and rhizobial nodulation by oxidative damage. Tolerance to salinity in pea plants was assessed by reducing stress ethylene levels through ACC deaminase-containing rhizobacteria(More)
The higher content of salt in soil is the key constraint to crop productivity. Induction of stress ethylene production from 1-aminocyclopropane-1-carboxylate (ACC) in the plant system is one of the consequences of salt stress responsible for toxicity to the plant. Several transgenic plants have been developed by expressing the ACC deaminase bacterial gene(More)
This study was aimed to investigate the effect of inoculation on three salt-tolerant, plant-growth-promoting rhizobacteria (PGPR) STR2 (Bacillus pumilus), STR8 (Halomonas desiderata) and STR36 (Exiguobacterium oxidotolerans), for their growth-promoting potential and efficacy in augmenting salt tolerance in Mentha arvensis, an essential oil-bearing crop and(More)
BACKGROUND Mentha arvensis is cultivated in large parts of the world for its menthol-rich essential oil. The study investigates the potential of four mycorrhizal fungi, viz. Glomus mosseae (Gm), Glomus aggregatum (Ga), Glomus fasciculatum (Gf) and Glomus intraradices (Gi) in alleviating NaCl-induced salt stress in Mentha arvensis cv. Kosi and establishes(More)
Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth(More)
The resilience of soil microbial populations and processes to environmental perturbation is of increasing interest as alteration in rhizosphere microbial community dynamics impacts the combined functions of plant–microbe interactions. The present study was conducted to investigate the effect of inoculation with halotolerant rhizobacteria Bacillus pumilus(More)