Deepa Madan

Learn More
This work presents performance advancements of dispenser printed composite thermoelectric materials and devices. Dispenser printed thick films allow for low-cost and scalable manufacturing of microscale energy harvesting devices. A maximum ZT value of 0.31 has been achieved for mechanically alloyed (MA) n-type Bi₂Te₃-epoxy composite films with 1 wt % Se(More)
This work reports on an integrated energy harvesting prototype consisting of dispenser-printed thermoelectric energy harvesting and electrochemical energy storage devices. The use of a commercially available DC-to-DC converter is explored to step-up the mV output voltage of the printed thermoelectric device to several volts for charging printable zinc-based(More)
This work presents a novel method to synthesize p-type composite thermoelectric materials to print scalable thermoelectric generator (TEG) devices in a cost-effective way. A maximum ZT of 0.2 was achieved for mechanically alloyed (MA) p-type Bi0.5Sb1.5Te3 (8 wt % extra Te additive)-epoxy composite films cured at 250 °C. A 50% increase in Seebeck coefficient(More)
Thermoelectric energy generators are attractive as potential energy harvesters for converting waste thermal energy into electrical power. Optimized thermoelectric device designs require 100-200 μm element thicknesses currently unachievable with common manufacturing technologies. This work presents both a unique direct-write dispenser printing technique and(More)
A novel roll-to-roll flexographic printing process for rechargeable zinc-based battery manufacturing was presented in this paper. Based on the fundamental operating mechanism of flexography, key criteria for developing functional flexographic printing inks were established, including composite ink rheology (steady-state viscosity and yield stress), ink(More)
Air-stable and soluble tetrabutylammonium fluoride (TBAF) is demonstrated as an efficient n-type dopant for the conjugated polymer ClBDPPV. Electron transfer from F- anions to the π-electron-deficient ClBDPPV through anion-π electronic interactions is strongly corroborated by the combined results of electron spin resonance, UV-vis-NIR, and ultraviolet(More)
  • 1