Learn More
Mutations in the genes encoding amyloid-beta precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2) are known to cause early-onset, autosomal dominant Alzheimer's disease. Studies of plasma and fibroblasts from subjects with these mutations have established that they all alter amyloid beta-protein (beta APP) processing, which normally leads to(More)
Mutations in the presenilin 1 (PS1) and presenilin 2 genes cosegregate with the majority of early-onset familial Alzheimer's disease (FAD) pedigrees. We now document that the Abeta1-42(43)/Abeta1-40 ratio in the conditioned media of independent N2a cell lines expressing three FAD-linked PS1 variants is uniformly elevated relative to cells expressing similar(More)
JNPL3 transgenic mice expressing a mutant tau protein, which develop neurofibrillary tangles and progressive motor disturbance, were crossed with Tg2576 transgenic mice expressing mutant beta-amyloid precursor protein (APP), thus modulating the APP-Abeta (beta-amyloid peptide) environment. The resulting double mutant (tau/APP) progeny and the Tg2576(More)
Five different Alzheimer mutations of the beta-amyloid precursor protein (APP) were expressed in neurons via recombinant herpes simplex virus (HSV) vectors, and the levels of APP metabolites were quantified. The predominant intracellular accumulation product was a C-terminal fragment of APP that co-migrated with the protein product of an HSV recombinant(More)
OBJECTIVE Plasma A beta levels are elevated in early-onset Alzheimer disease (AD) caused by autosomal dominant mutations. Our objective was to determine whether similar genetic elevations exist in late-onset AD (LOAD). METHODS We measured plasma A beta in first-degree relatives of patients with LOAD in a cross-sectional series and in extended LOAD(More)
Autosomal dominant mutations in the presenilin 1 (PS1) gene are associated with familial, early-onset Alzheimer's disease. Although the pathogenic mechanism of these mutations is unclear, their common feature is that they lead to an increased concentration of amyloid beta-peptide (Abeta) 42 in the plasma of early-onset patients, in the conditioned media of(More)
Cholesterol is eliminated from neurons by oxidization, which generates oxysterols. Cholesterol oxidation is mediated by the enzymes cholesterol 24-hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1). Immunocytochemical studies show that CYP46A1 and CYP27A1 are expressed in neurons and some astrocytes in the normal brain, and CYP27A1 is present in(More)
Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM(More)
A screen of a library of synthetic drugs and natural product extracts identified a botanical extract that modulates the processing of amyloid precursor protein (APP) in cultured cells to produce a lowered ratio of amyloid-beta peptide (1-42) (Aβ42) relative to Aβ40. This profile is of interest as a potential treatment for Alzheimer's disease. The extract,(More)