Debra J. Medway

Learn More
RATIONALE Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at(More)
Conventional methods to quantify infarct size after myocardial infarction in mice are not ideal, requiring either tissue destruction for histology or relying on nondirect measurements such as wall motion. We therefore implemented a fast, high-resolution method to directly measure infarct size in vivo using three-dimensional (3D) late gadolinium enhancement(More)
Acute myocardial infarction (AMI) results in the recruitment of leukocytes to injured myocardium. Additionally, myocardium remote to the infarct zone also becomes inflamed and is associated with adverse left ventricular remodelling. Renal ischaemic syndromes have been associated with remote organ inflammation and impaired function. Here, we tested the(More)
MRI can accurately and reproducibly assess cardiac function in rodents but requires relatively long imaging times. Therefore, parallel imaging techniques using a 4-element RF-coil array and MR sequences for cardiac MRI in rats were implemented at ultra-high magnetic fields (9.4 Tesla [T]). The hypothesis that these developments would result in a major(More)
UNLABELLED Discrepant results for the phenotype of mitochondrial creatine kinase knockout mice (Mt-CK(-/-)) could be due to mixed genetic background and use of non-littermate controls. We therefore backcrossed with C57BL/6J for >8 generations, followed by extensive in vivo cardiac phenotyping. Echocardiography and in vivo LV haemodynamics were performed in(More)
BACKGROUND To investigate the utility of three-dimensional guide-point modeling (GPM) to reduce the time required for CMR evaluation of global cardiac function in mice, by reducing the number of image slices required for accurate quantification of left-ventricular (LV) mass and volumes. METHODS Five female C57Bl/6 mice 8 weeks post myocardial infarction(More)
BACKGROUND Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP) are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by(More)
Creatine is important for energy metabolism, yet excitable cells such as cardiomyocytes do not synthesize creatine and rely on uptake via a specific membrane creatine transporter (CrT; SLC6A8). This process is tightly controlled with downregulation of CrT upon continued exposure to high creatine via mechanisms that are poorly understood. Our aim was to(More)
Cardiac ischemia-reperfusion experiments in the mouse are important in vivo models of human disease. Infarct size is a particularly important scientific readout as virtually all cardiocirculatory pathways are affected by it. Therefore, such measurements must be exact and valid. The histological analysis, however, remains technically challenging, and the(More)
AIMS Increasing energy storage capacity by elevating creatine and phosphocreatine (PCr) levels to increase ATP availability is an attractive concept for protecting against ischaemia and heart failure. However, testing this hypothesis has not been possible since oral creatine supplementation is ineffectual at elevating myocardial creatine levels. We(More)