Deborah R. Davis

Learn More
Angiotensinogen (AGT) is mainly expressed in glial cells in close proximity to renin-expressing neurons in the brain. We previously reported that glial-specific overexpression of ANG II results in mild hypertension. Here, we tested the hypothesis that glial-derived AGT plays an important role in blood pressure regulation in hypertensive mice carrying human(More)
Renin is the rate-limiting enzyme in the renin-angiotensin system and thus dictates the level of the pressor hormone angiotensin-II. The classical site of renin expression and secretion is the renal juxtaglomerular cell, where its expression is tightly regulated by physiological cues. An evolutionarily conserved transcriptional enhancer located 11 kb(More)
Although elevated renin-angiotensin system activity and angiotensinergic signaling within the brain are required for hypertension, polydipsia, and increased metabolic rate induced by deoxycorticosterone acetate (DOCA)-salt, the contribution of specific receptor subtypes and brain nuclei mediating these responses remains poorly defined. We hypothesized that(More)
Preeclampsia is a cardiovascular disorder of late pregnancy that is, commonly characterized by hypertension, renal structural damage and dysfunction, and fetal growth restriction. Prevailing etiologic models of this disorder include T-cell dysfunction as an initiating cause of preeclampsia. Indoleamine 2,3-dioxygenase (IDO), an enzyme that mediates the(More)
To facilitate the study of renal proximal tubules, we generated a transgenic mouse strain expressing an improved Cre recombinase (iCre) under the control of the kidney androgen-regulated protein (KAP) promoter. The transgene was expressed in the kidney of male mice but not in female mice. Treatment of female transgenic mice with androgen induced robust(More)
We generated transgenic mice with two P1 artificial chromosomes, each containing the human renin (HREN) gene and extending to -35 and -75 kilobase pairs, respectively. HREN protein production was restricted to juxtaglomerular cells of the kidney, and its expression was tightly regulated by angiotensin II and sodium. The magnitude of the up- and(More)
The genetic regulation of blood pressure (BP) and endothelial function is likely to be polygenic. Because there is considerable variability in basal BP among inbred mouse strains, the purpose of this study was to determine whether a similar variability in vascular function exists among 7 "normotensive" strains. We tested the hypothesis that compared with(More)
Angiotensinogen (AGT) was the first gene to be genetically linked to hypertension in humans. Analysis of the gene sequence identified a number of polymorphisms, several of which were reported associated with increased blood pressure (BP) or other cardiovascular diseases. One haplotype of the human AGT (hAGT) gene consisting of an allele at the -6 (A vs. G)(More)