Deborah Packham

Learn More
BACKGROUND & AIMS Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by heterozygous germline sequence mutations of DNA mismatch repair genes, most frequently MLH1 or MSH2. A novel molecular mechanism for HNPCC has recently been suggested by the finding of individuals with soma-wide monoallelic hypermethylation of the MLH1 gene promoter. In this(More)
Lynch syndrome is an autosomal dominant cancer predisposition syndrome classically caused by germline mutations of the mismatch repair genes, MLH1, MSH2, MSH6 and PMS2. Constitutional epimutations of the MLH1 gene, characterized by soma-wide methylation of a single allele of the promoter and allelic transcriptional silencing, have been identified in a(More)
This study prospectively examines the accuracy of immunohistochemical staining in the identification of mismatch repair defective (MMRD) colorectal cancer in routine clinical practice. The potential impact of this information on decisions regarding adjuvant treatment and germline testing were quantified. A consecutive series of fresh tissue (836 cancers)(More)
Activating mutations of the BRAF and KRAS genes cause constitutive stimulation of an important cell-signaling pathway promoting tumorigenesis, and are increasingly recognized as determinants of response to targeted cancer therapies. The V600E mutation accounts for most of the BRAF mutations in cancer, and KRAS mutations are predominantly encoded by(More)
PTEN is an important tumour suppressor gene that is mutated in Cowden syndrome as well as various sporadic cancers. CpG island hypermethylation is another route to tumour suppressor gene inactivation, however, the literature regarding PTEN hypermethylation in cancer is controversial. Furthermore, investigation of the methylation status of the PTEN CpG(More)
Biallelic promoter methylation and transcriptional silencing of the MLH1 gene occurs in the majority of sporadic colorectal cancers exhibiting microsatellite instability due to defective DNA mismatch repair. Long-range epigenetic silencing of contiguous genes has been found on chromosome 2q14 in colorectal cancer. We hypothesized that epigenetic silencing(More)
IMPORTANCE Constitutional hypermethylation of 1 allele throughout the soma (constitutional epimutation) is an accepted mechanism of cancer predisposition. Understanding the origin and inheritance of epimutations is important for assessing cancer risk in affected families. OBSERVATIONS We report a 29-year-old man with early-onset colorectal cancer who(More)
Biallelic promoter methylation and transcriptional silencing of the MLH1 gene occurs in the majority of sporadic colorectal cancers exhibiting microsatellite instability due to defective DNA mismatch repair. Long-range epigenetic silencing of contiguous genes has been found on chromosome 2q14 in colorectal cancer. We hypothesized that epigenetic silencing(More)
Arachidonate (1-300 microM) mobilized Ca2+ ions from an intracellular store and stimulated the entry of Ca2+ ions from the extracellular fluid in undifferentiated HL-60 cells that had been loaded with Fura-2. The integrated response was biphasic in form: arachidonate liberated Ca2+ ions from the intracellular store first, resulting in a transient increase(More)
Lynch syndrome is an autosomal dominant disorder that predisposes carriers of DNA mismatch repair (MMR) gene mutations to early-onset cancer. Germline testing screens exons and splice sites for mutations, but does not examine introns or RNA transcripts for alterations. Pathogenic mutations have not been detected in ~30% of suspected Lynch syndrome cases(More)