Deborah L. Heyl

Learn More
Tachyplesin I is a cyclic beta-sheet antimicrobial peptide isolated from the hemocytes of Tachypleus tridentatus. The four cysteine residues in tachyplesin I play a structural role in imparting amphipathicity to the peptide which has been shown to be essential for its activity. We investigated the role of amphipathicity using an analogue of tachyplesin I(More)
The synthesis and binding affinities of 32 X3Gly4 dual-substitution analogues of the natural opioid heptapeptides deltorphin I and II are reported. A multiple regression QSAR analysis was performed using those results along with literature data for the X3Asp4 and Phe3X4 side chain analogues. Fitting to a three-term potential well model with hydrophobic and(More)
The delta selectivity of the opioid heptapeptides deltorphin I and II has been attributed to the C-terminal 'address' domain, the hydrophobic Val(5)-Val(6) residues apparently playing a topographical role. We now report the synthesis, opioid binding affinities, and a QSAR study of a series of peptides in which one of the valine side chains was altered. QSAR(More)
A 21-residue peptide segment, LL7-27 (RKSKEKIGKEFKRIVQRIKDF), corresponding to residues 7-27 of the only human cathelicidin antimicrobial peptide, LL37, is shown to exhibit potent activity against microbes (particularly Gram-positive bacteria) but not against erythrocytes. The structure, membrane orientation, and target membrane selectivity of LL7-27 are(More)
A key factor in the development of type II diabetes is the loss of insulin-producing beta-cells. Human islet amyloid polypeptide protein (human-IAPP) is believed to play a crucial role in this process by forming small aggregates that exhibit toxicity by disrupting the cell membrane. The actual mechanism of membrane disruption is complex and appears to(More)
The glycosidase alpha-amylase is responsible for the hydrolysis of alpha(1-->4) glycosidic linkages found in dietary starch as one means for controlling blood sugar level. The effect of alpha-amylase is detrimental, however, in the disease state diabetes mellitus, where blood glucose levels are elevated due to a biochemical defect. Inhibition of the(More)
A key factor in the development of Type II diabetes is the loss of insulin producing pancreatic beta-cells. The amyloidogenic human Islet Amyloid Polypeptide (hIAPP also known as human amylin) is believed to play a crucial role in this biological process. Previous studies have shown that hIAPP forms small aggregates that kill beta-cells by disrupting the(More)
The in vitro pharmacological properties and conformational features of analogs of the delta opioid receptor selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13) in which the Phe3 residue was replaced by each of the four stereoisomers of beta-methylphenylalanine (beta-MePhe) were investigated. Both analogs in which the alpha carbon of the Phe3(More)
Neurotensin (NT), is a linear tetradecapeptide (pGlu1-Leu2-Tyr3-Glu4-Asn5- Lys6-Pro7-Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13) that has been found in the central nervous system and peripheral tissues and appears to have a variety of physiological properties. A C-terminal hexapeptide analogue [N alpha Me-Arg-Lys-Pro-Trp-Tle-Leu, (1) Tle = tert-leucine] has recently(More)
Human islet amyloid polypeptide (hIAPP) forms cytotoxic fibrils in type-2 diabetes and insulin is known to inhibit formation of these aggregates. In this study, a series of insulin-based inhibitors were synthesized and assessed for their ability to slow aggregation and impact hIAPP-induced membrane damage. Computational studies were employed to examine the(More)