Deborah J G Mackay

Learn More
BACKGROUND Patients with permanent neonatal diabetes usually present within the first three months of life and require insulin treatment. In most, the cause is unknown. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose-stimulated insulin secretion from the pancreatic beta cells, we hypothesized that activating mutations in the gene encoding(More)
We have previously described individuals presenting with transient neonatal diabetes and showing a variable pattern of DNA hypomethylation at imprinted loci throughout the genome. We now report mutations in ZFP57, which encodes a zinc-finger transcription factor expressed in early development, in seven pedigrees with a shared pattern of mosaic(More)
Transient neonatal diabetes mellitus (TNDM) is diagnosed in the first 6 months of life, with remission in infancy or early childhood. For approximately 50% of patients, their diabetes will relapse in later life. The majority of cases result from anomalies of the imprinted region on chromosome 6q24, and 14 patients with ATP-sensitive K+ channel (K(ATP)(More)
Genomic imprinting is an epigenetic phenomenon restricting gene expression in a manner dependent on parent of origin. Imprinted gene products are critical regulators of growth and development, and imprinting disorders are associated with both genetic and epigenetic mutations, including disruption of DNA methylation within the imprinting control regions(More)
Transient neonatal diabetes mellitus (TNDM) is associated with overexpression of an imprinted locus on chromosome 6q24; this locus contains a differentially methylated region (DMR) consisting of an imprinted CpG island that normally allows expression only from the paternal allele of genes under its control. Three types of abnormality involving 6q24 are(More)
Recently, we reported the localization of a gene for transient neonatal diabetes mellitus (TNDM), a rare form of childhood diabetes, to an approximately 5.4 Mb region of chromosome 6q24. We have also shown that TNDM is associated with both paternal uniparental disomy (UPD) of chromosome 6 and paternal duplications of the critical region. The sequencing of(More)
Transient neonatal diabetes mellitus type 1 (TNDM1) is a rare but remarkable form of diabetes which presents in infancy, resolves in the first months of life, but then frequently recurs in later life. It is caused by overexpression of the imprinted genes PLAGL1 and HYMAI on human chromosome 6q24. The expression of these genes is normally restricted to the(More)
BACKGROUND Genomic imprinting is allelic restriction of gene expression potential depending on parent of origin, maintained by epigenetic mechanisms including parent of origin-specific DNA methylation. Among approximately 70 known imprinted genes are some causing disorders affecting growth, metabolism and cancer predisposition. Some imprinting disorder(More)
Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (K(ATP)), are the(More)
BACKGROUND Silver-Russell syndrome (SRS) is characterised by intrauterine growth restriction, poor postnatal growth, relative macrocephaly, triangular face and asymmetry. Maternal uniparental disomy (mUPD) of chromosome 7 and hypomethylation of the imprinting control region (ICR) 1 on chromosome 11p15 are found in 5-10% and up to 60% of patients with SRS,(More)