Learn More
Like leptin, the pancreatic hormone insulin is an important adiposity signal to the brain. We report that the hypothalamic melanocortin system is an important target of the actions of insulin to regulate food intake and body weight. Hypothalamic neurons expressing insulin receptors were found to coexpress the melanocortin precursor molecule(More)
In peripheral tissues, insulin signaling involves activation of the insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase (PI3K) enzyme system. In the hypothalamus, insulin functions with leptin as an afferent adiposity signal important for the regulation of body fat stores and hepatic glucose metabolism. To test the hypothesis that hypothalamic(More)
Obesity and its associated health disorders and costs are increasing. Males and females differ in terms of how and where body fat is stored, the hormones they secrete in proportion to their fat, and the way their brains respond to signals that regulate body fat. Fat accumulation in the intra-abdominal adipose depot is associated with the risk for developing(More)
Melanin-concentrating hormone (MCH) and orexin-A are orexigenic peptidergic neurotransmitters produced primarily in the lateral hypothalamus. Because two other hypothalamic peptides, neuropeptide Y and agouti-related peptide, increase food intake by a mechanism that depends on activation of opioid receptors, we assessed whether MCH or orexin-A also elicits(More)
There is now considerable consensus that the adipocyte hormone leptin and the pancreatic hormone insulin are important regulators of food intake and energy balance. Leptin and insulin fulfill many of the requirements to be putative adiposity signals to the brain. Plasma leptin and insulin levels are positively correlated with body weight and with adipose(More)
Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity,(More)
The lateral hypothalamus (LH) has a critical role in the control of feeding and drinking. Melanin-concentrating hormone (MCH) is an orexigenic peptidergic neurotransmitter produced primarily in the LH, and agouti-related protein (AgRP) is an orexigenic peptidergic neurotransmitter produced exclusively in the arcuate (ARC), an area that innervates the LH. We(More)
The melanin-concentrating hormone-1 receptor (MCH1R) is a G-protein-coupled receptor expressed in the brain and peripheral tissues that regulates energy storage and body weight. Here, we focused on discovery of the mechanism and site of action for a small-molecule MCH1R antagonist, which yields weight loss in a mouse model of human obesity. MCH1R is(More)
Recent studies indicate that decreased central dopamine is associated with diet-induced obesity in humans and in animal models. In the current study, the authors assessed the hypothesis that diet-induced obesity reduces mesolimbic dopamine function. Specifically, the authors compared dopamine turnover in this region between rats fed a high-fat diet and(More)
Recent research and theory point to the possibility that hippocampal-dependent learning and memory mechanisms translate neurohormonal signals of energy balance into adaptive behavioral outcomes involved with the inhibition of food intake. The present paper summarizes these findings and ideas and considers the hypothesis that excessive caloric intake and(More)