Learn More
To study the nuclear organization and dynamics of nucleotide excision repair (NER), the endonuclease ERCC1/XPF (for excision repair cross complementation group 1/xeroderma pigmentosum group F) was tagged with green fluorescent protein and its mobility was monitored in living Chinese hamster ovary cells. In the absence of DNA damage, the complex moved freely(More)
Eight different bacteriophages were isolated from leaves of Pisum sativum, Phaseolus vulgaris, Lycopersicon esculentum, Daucus carota sativum, Raphanus sativum, and Ocimum basilicum. All contain three segments of double-stranded RNA and have genomic-segment sizes that are similar but not identical to those of previously described bacteriophage phi6. All(More)
The transcription/repair factor TFIIH operates as a DNA helix opener in RNA polymerase II (RNAP2) transcription and nucleotide excision repair. To study TFIIH in vivo, we generated cell lines expressing functional GFP-tagged TFIIH. TFIIH was homogeneously distributed throughout the nucleus with nucleolar accumulations. We provide in vivo evidence for(More)
Nucleotide excision repair (NER) requires the concerted action of many different proteins that assemble at sites of damaged DNA in a sequential fashion. We have constructed a mathematical model delineating hallmarks and general characteristics for NER. We measured the assembly kinetics of the putative damage-recognition factor XPC-HR23B at sites of DNA(More)
To investigate how the nucleotide excision repair initiator XPC locates DNA damage in mammalian cell nuclei we analyzed the dynamics of GFP-tagged XPC. Photobleaching experiments showed that XPC constantly associates with and dissociates from chromatin in the absence of DNA damage. DNA-damaging agents retard the mobility of XPC, and UV damage has the most(More)
Inborn defects in nucleotide excision DNA repair (NER) can paradoxically result in elevated cancer incidence (xeroderma pigmentosum [XP]) or segmental progeria without cancer predisposition (Cockayne syndrome [CS] and trichothiodystrophy [TTD]). We report generation of a knockin mouse model for the combined disorder XPCS with a G602D-encoding mutation in(More)
A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting(More)
DNA repair-deficient trichothiodystrophy (TTD) results from mutations in the XPD and XPB subunits of the DNA repair and transcription factor TFIIH. In a third form of DNA repair-deficient TTD, called group A, none of the nine subunits encoding TFIIH carried mutations; instead, the steady-state level of the entire complex was severely reduced. A new, tenth(More)
Chromatin changes within the context of DNA repair remain largely obscure. Here we show that DNA damage induces monoubiquitylation of histone H2A in the vicinity of DNA lesions. Ultraviolet (UV)-induced monoubiquitylation of H2A is dependent on functional nucleotide excision repair and occurs after incision of the damaged strand. The ubiquitin ligase Ring2(More)
Most chromatin in interphase nuclei is part of condensed chromatin domains. Previous work has indicated that transcription takes place primarily at the surface of chromatin domains, that is, in the perichromatin region. It is possible that genes inside chromatin domains are silenced due to inaccessibility to macromolecular components of the transcription(More)