Deborah G. Murdock

Learn More
Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues(More)
By using current biological understanding, a conceptually simple, but mathematically complex, model is proposed for the dynamics of the gene circuit responsible for regulating nitrogen catabolite repression (NCR) in yeast. A variety of mathematical "structure" theorems are described that allow one to determine the asymptotic dynamics of complicated systems(More)
Mitochondrial DNA (mtDNA) haplogroups are valuable for investigations in forensic science, molecular anthropology, and human genetics. In this study, we developed a custom panel of 61 mtDNA markers for high-throughput classification of European, African, and Native American/Asian mitochondrial haplogroup lineages. Using these mtDNA markers, we constructed a(More)
HIV sensory neuropathy and distal neuropathic pain (DNP) are common, disabling complications associated with combination antiretroviral therapy (cART). We previously associated iron-regulatory genetic polymorphisms with a reduced risk of HIV sensory neuropathy during more neurotoxic types of cART. We here evaluated the impact of polymorphisms in 19(More)
Alzheimer disease (AD) is a devastating neurodegenerative disease affecting more than five million Americans. In this study, we have used updated genetic linkage data from chromosome 10 in combination with expression data from serial analysis of gene expression to choose a new set of thirteen candidate genes for genetic analysis in late onset Alzheimer(More)
Substantial progress has been made in identifying susceptibility variants for age-related macular degeneration (AMD). The majority of research to identify genetic variants associated with AMD has focused on nuclear genetic variation. While there is some evidence that mitochondrial genetic variation contributes to AMD susceptibility, to date, these studies(More)
INTRODUCTION Mitochondrial function influences T cell dynamics and is affected by mitochondrial DNA (mtDNA) variation. We previously reported an association between African mtDNA haplogroup L2 and less robust CD4 cell recovery on antiretroviral therapy (ART) in non-Hispanic black ACTG 384 subjects. We explored whether additional T cell parameters in this(More)
  • 1