Deborah Estrin

Learn More
Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the <italic>directed diffusion</italic> paradigm for such coordination. Directed diffusion is(More)
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with(More)
This memo discusses a proposed extension to the Internet architecture and protocols to provide integrated services, i.e., to support realtime as well as the current non-real-time service of IP. This extension is necessary to meet the growing need for real-time service for a variety of new applications, including teleconferencing, remote seminars,(More)
Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like marine biology, requires that these nodes be very small, light, un-tethered and unobtrusive, imposing substantial restrictions on the amount of additional hardware that can be placed at each node. Practical considerations such as the small(More)
We introduce a <i>geographical adaptive fidelity</i> (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing <i>fidelity</i>. GAF moderates this policy using application-(More)
Networked sensors-those that coordinate amongst themselves to achieve a larger sensing task-will revolutionize information gathering and processing both in urban environments and in inhospitable terrain. The sheer numbers of these sensors and the expected dynamics in these environments present unique challenges in the design of unattended autonomous sensor(More)
This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with nodes(More)
Advances in processor, memory, and radio technology will enable small and cheap nodes capable of sensing, communication, and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the <i>directed-diffusion</i> paradigm for such coordination. Directed diffusion is data-centric(More)
Recent advances in miniaturization and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low-power sensors and actuators. Time synchronization is critical in sensor networks for diverse purposes including sensor data fusion, coordinated actuation, and power-efficient duty cycling. Though the clock accuracy(More)
Previously proposed sensor network data dissemination schemes require periodic low-rate flooding of data in order to allow recovery from failure. We consider constructing two kinds of multipaths to enable energy efficient recovery from failure of the shortest path between source and sink. Disjoint multipath has been studied in the literature. We propose a(More)