Deborah Estrin

Learn More
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with(More)
Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the <italic>directed diffusion</italic> paradigm for such coordination. Directed diffusion is(More)
This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with nodes(More)
We introduce a <i>geographical adaptive fidelity</i> (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing <i>fidelity</i>. GAF moderates this policy using application-(More)
Recent advances in miniaturization and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low-power sensors and actuators. Time synchronization is critical in sensor networks for diverse purposes including sensor data fusion, coordinated actuation, and power-efficient duty cycling. Though the clock accuracy(More)
Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like marine biology, requires that these nodes be very small, light, un-tethered and unobtrusive, imposing substantial restrictions on the amount of additional hardware that can be placed at each node. Practical considerations such as the small(More)
Advances in processor, memory, and radio technology will enable small and cheap nodes capable of sensing, communication, and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the <i>directed-diffusion</i> paradigm for such coordination. Directed diffusion is data-centric(More)
Making effective use of the vast amounts of data gathered by large-scale sensor networks will require scalable, self-organizing, and energy-efficient data dissemination algorithms. Previous work has identified data-centric routing as one such method. In an asso-ciated position paper [23], we argue that a companion method, data-centric storage (DCS), is also(More)
Future sensor networks will be composed of a large number of densely deployed sensors/actuators. A key feature of such networks is that their nodes are untethered and unattended. Consequently, energy efficiency is an important design consideration for these networks. Motivated by the fact that sensor network queries may often be geographical, we design and(More)