Learn More
Common genetic polymorphisms may explain a portion of the heritable risk for common diseases. Within candidate genes, the number of common polymorphisms is finite, but direct assay of all existing common polymorphism is inefficient, because genotypes at many of these sites are strongly correlated. Thus, it is not necessary to assay all common variants if(More)
As a first step toward understanding how rare variants contribute to risk for complex diseases, we sequenced 15,585 human protein-coding genes to an average median depth of 111× in 2440 individuals of European (n = 1351) and African (n = 1088) ancestry. We identified over 500,000 single-nucleotide variants (SNVs), the majority of which were rare (86% with a(More)
Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to(More)
Fluorescence-based sequencing is playing an increasingly important role in efforts to identify DNA polymorphisms and mutations of biological and medical interest. The application of this technology in generating the reference sequence of simple and complex genomes is also driving the development of new computer programs to automate base calling (Phred),(More)
234 nature genetics • volume 27 • march 2001 Nevertheless, these new microarray methods are notable for their simplicity and their ability to be scaled up. This is illustrated by the construction of 'whole-genome scan' arrays, in which probes representing the vast majority of all exons predicted by Genscan in the draft human genome (over 442,000) were(More)
Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of(More)
Establishing the age of each mutation segregating in contemporary human populations is important to fully understand our evolutionary history and will help to facilitate the development of new approaches for disease-gene discovery. Large-scale surveys of human genetic variation have reported signatures of recent explosive population growth, notable for an(More)
Genome-wide association studies suggest that common genetic variants explain only a modest fraction of heritable risk for common diseases, raising the question of whether rare variants account for a significant fraction of unexplained heritability. Although DNA sequencing costs have fallen markedly, they remain far from what is necessary for rare and novel(More)
Identifying regions of the human genome that have been targets of natural selection will provide important insights into human evolutionary history and may facilitate the identification of complex disease genes. Although the signature that natural selection imparts on DNA sequence variation is difficult to disentangle from the effects of neutral processes(More)
Characterizing fine-scale variation in human recombination rates is important, both to deepen understanding of the recombination process and to aid the design of disease association studies. Current genetic maps show that rates vary on a megabase scale, but studying finer-scale variation using pedigrees is difficult. Sperm-typing experiments have(More)