Debbie Trinder

Learn More
BACKGROUND The mechanism of iron absorption by the intestine and its transfer to the main iron storage site, the liver, is poorly understood. Recently an iron carrier was cloned and named DMT1 (divalent metal transporter 1). AIMS To determine the level of DMT1 gene expression and protein distribution in duodenum and liver. METHODS A DMT1 cRNA and(More)
The effect of two running sessions completed within a 12-h period on hemolysis, inflammation, and hepcidin activity in endurance athletes was investigated. Ten males completed two experimental trials in a randomized, counterbalanced order. The two trials included (a) a one-running-session trial (T1) including 10 × 1 km interval repeats (90% peak $$(More)
Urinary hepcidin, inflammation, and iron metabolism were examined during the 24 hr after exercise. Eight moderately trained athletes (6 men, 2 women) completed a 60-min running trial (15-min warm-up at 75-80% HR(peak) + 45 min at 85-90% HR(peak)) and a 60-min trial of seated rest in a randomized, crossover design. Venous blood and urine samples were(More)
Transferrin receptor 1 (TfR1) which mediates uptake of transferrin-bound iron, is essential for life in mammals. Recently, a close homologue of human transferrin receptor 1 was cloned and called transferrin receptor 2 (TfR2). A similar molecule has been identified in the mouse. Human transferrin receptor 2 is 45% identical with transferrin receptor 1 in the(More)
Iron is utilised by the body for oxygen transport and energy production, and is therefore essential to athletic performance. Commonly, athletes are diagnosed as iron deficient, however, contrasting evidence exists as to the severity of deficiency and the effect on performance. Iron losses can result from a host of mechanisms during exercise such as(More)
While iron is an essential trace element required by nearly all living organisms, deficiencies or excesses can lead to pathological conditions such as iron deficiency anemia or hemochromatosis, respectively. A decade has passed since the discovery of the hemochromatosis gene, HFE, and our understanding of hereditary hemochromatosis (HH) and iron metabolism(More)
Hereditary hemochromatosis (HH) is a disorder of iron metabolism in which enhanced iron absorption of dietary iron causes increased iron accumulation in the liver, heart, and pancreas. Most individuals with HH are homozygous for a C282Y mutation in the HFE gene. The function of HFE protein is unknown, but it is hypothesized that it acts in association with(More)
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found(More)
The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1(More)