Debasish Chatterjee

Learn More
In this paper we prove that a switched nonlinear system has several useful input-to-state stable (ISS)-type properties under average dwelltime switching signals if each constituent dynamical system is ISS. This extends available results for switched linear systems. We apply our result to stabilization of uncertain nonlinear systems via switching supervisory(More)
This paper presents a general framework for analyzing stability of nonlinear switched systems, by combining the method of multiple Lyapunov functions with a suitably adapted comparison principle in the context of stability in terms of two measures. For deterministic switched systems, this leads to a unification of representative existing results and an(More)
We study the problem of receding horizon control for stochastic discrete-time systems with bounded control inputs and incomplete state information. Given a suitable choice of causal control policies, we first present a slight extension of the Kalman filter to estimate the state optimally in mean-square sense. We then show how to augment the underlying(More)
Probabilistic Computation Tree Logic (PCTL) is a well-known modal logic which has become a standard for expressing temporal properties of finite-state Markov chains in the context of automated model checking. In this paper, we consider PCTL for noncountable-space Markov chains, and we show that there is a substantial affinity between certain of its(More)
We develop a novel framework for formulating a class of stochastic reachability problems with state constraints as a stochastic optimal control problem. Previous approaches to solving these problems are either confined to the deterministic setting or address almost-sure stochastic notions. In contrast, we propose a new methodology to tackle probabilistic(More)
This paper describes the swing-up and stabilization of a cart–pendulum system with a restricted cart track length and restricted control force using generalized energy control methods. Starting from a pendant position, the pendulum is swung up to the upright unstable equilibrium con5guration using energy control principles. An “energy well” is built within(More)
This paper is concerned with the problem of Model Predictive Control and Rolling Horizon Control of discrete-time systems subject to possibly unbounded random noise inputs, while satisfying hard bounds on the control inputs. We use a nonlinear feedback policy with respect to noise measurements and show that the resulting mathematical program has a tractable(More)