Learn More
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets(More)
In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit(More)
Diabetes Mellitus (DM) is the fastest growing metabolic disorder affecting about 387 million people across the globe and is estimated to affect 592 million people by year 2030. The search for newer anti-diabetic agents is the foremost need to control the accelerating diabetic population. Several natural and (semi) synthetic chalcones deserve the credit of(More)
The protein kinases regulate cellular functions such as transcription, translation, proliferation, growth and survival by the process of phosphorylation. Over activation of signaling pathways play a major role in oncogenesis. The PI3K signaling pathway is dysregulated almost in all cancers due to the amplification, genetic mutation of PI3K gene and the(More)
Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic(More)
The Ras/Raf/MEK/ERK signaling pathway involves various kinases in which each kinase is associated with one another through signals and regulates cell proliferation, differentiation and apoptosis. This pathway is dysregulated almost in all cancers due to the amplification and genetic mutation of various components of the pathway. The genetic mutations have(More)
The discovery of genetic, genomic and clinical biomarkers have revolutionized the treatment option in the form of personalized medicine which allows to accurately predict a person's susceptibility/progression of disease, the patient's response to therapy, and maximize the therapeutic outcome in terms of low/no toxicity for a particular patient. Recently,(More)
A variety of substituents on the thiazolidine-2,4-dione(TZD) nucleus have provided a wide spectrum of biological activities by the using of different mechanism on various target sites. PPARγ ligands have recently been demonstrated to affect cell proliferation, differentiation and apoptosis of different cell types. Currently, some of the TZDs are designed(More)
INTRODUCTION The RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathways have been identified as promising therapeutic targets for cancer therapy. Over-activation of these pathways and their components including gene mutations has been considered as one of the major causes of melanoma. Mitogen-activated protein kinase (MEK) is a downstream kinase of RAS(More)
BACKGROUND PIK3CA gene was found in generation of p110 alpha (p110α) protein through an instruction process. p110 alpha acts as a catalytic subunit of phosphatidylinositol 3-kinase (PI3K) proceed phosphorylation of signal molecules through PI3K pathway. This PI3K involved in regulation of cellular growth, transformation, adhesion, apoptosis, survival and(More)