Learn More
We report here the purification and characterization of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase, a bifunctional enzyme (PMI-GMP) which catalyzes both the phosphomannose isomerase (PMI) and guanosine 5'-diphospho-D-mannose pyrophosphorylase (GMP) reactions of the Pseudomonas aeruginosa alginate biosynthetic pathway. The(More)
In Staphylococcus aureus RN4220, lipoteichoic acid (LTA) is anchored in the membrane by a diglucosyldiacylglycerol moiety. The gene (ypfP) which encodes diglucosyldiacylglycerol synthase was recently cloned from Bacillus subtilis and expressed in Escherichia coli (P. Jorasch, F. P. Wolter, U. Zahringer, and E. Heinz, Mol. Microbiol. 29:419-430, 1998). To(More)
To assess the potential for emergence of resistance during the use of linezolid, we tested 10 clinical isolates of vancomycin-resistant enterococci (VRE) (four Enterococcus faecalis, five Enterococcus faecium, and one Enterococcus gallinarum) as well as a vancomycin-susceptible control (ATCC 29212) strain of E. faecalis. The enterococci were exposed to(More)
The oxazolidinones are one of the newest classes of antibiotics. They inhibit bacterial growth by interfering with protein synthesis. The mechanism of oxazolidinone action and the precise location of the drug binding site in the ribosome are unknown. We used a panel of photoreactive derivatives to identify the site of action of oxazolidinones in the(More)
The soil bacteria Pseudomonas putida can use benzoate or 3-chlorobenzoate as a sole carbon source. Benzoate and 3-chlorobenzoate are converted into catechol and 3-chlorocatechol, respectively, which are in turn converted into tricarboxylic acid cycle intermediates. The catabolic pathways of both compounds proceed through similar intermediates, have similar(More)
The key enzymatic activity of the ribosome is catalysis of peptide bond formation. This reaction is a target for many clinically important antibiotics. However, the molecular mechanisms of the peptidyl transfer reaction, the catalytic contribution of the ribosome, and the mechanisms of antibiotic action are still poorly understood. Here we describe a novel,(More)
Phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase (PMI-GMP), which is encoded by the algA gene, catalyzes two noncontiguous steps in the alginate biosynthetic pathway of Pseudomonas aeruginosa; the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate and the synthesis of GDP-D-mannose and PPi from GTP and D-mannose(More)
The oxazolidinones are a new class of potent antibiotics that are active against a broad spectrum of Gram-positive bacterial pathogens including those resistant to other antibiotics. These drugs specifically inhibit protein biosynthesis whereas DNA and RNA synthesis are not affected. Although biochemical and genetic studies indicate that oxazolidinones(More)
The oxazolidinones represent a new class of antimicrobial agents which are active against multidrug-resistant staphylococci, streptococci, and enterococci. Previous studies have demonstrated that oxazolidinones inhibit bacterial translation in vitro at a step preceding elongation but after the charging of N-formylmethionine to the initiator tRNA molecule.(More)
The oxazolidinones are a new class of synthetic antibiotics with good activity against gram-positive pathogenic bacteria. Experiments with a susceptible Escherichia coli strain, UC6782, demonstrated that in vivo protein synthesis was inhibited by both eperezolid (formerly U-100592) and linezolid (formerly U-100766). Both linezolid and eperezolid were potent(More)