Learn More
Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense(More)
Auxin is transported by the influx carriers auxin resistant 1/like aux1 (AUX/LAX), and the efflux carriers pin-formed (PIN) and P-glycoprotein (PGP), which play a major role in polar auxin transport. Several auxin transporter genes have been characterized in dicotyledonous Arabidopsis, but most are unknown in monocotyledons, especially in sorghum. Here, we(More)
• Auxin has an important role in maintaining optimal root system architecture (RSA) that can cope with growth reductions of crops caused by water or nutrient shortages. However, the mechanism of controlling RSA remains largely unclear. Here, we found a limiting factor of RSA--OsARF12--an auxin response factor whose knockout led to decreased primary root(More)
Leaf senescence, as the last stage of leaf development, is regulated by diverse developmental and environmental factors. Jasmonates (JAs) have been shown to induce leaf senescence in several plant species; however, the molecular mechanism for JA-induced leaf senescence remains unknown. In this study, proteomic, genetic, and physiological approaches were(More)
The involvement of cytokinins (CTKs) in the repression of phosphate (Pi)-starvation signalling has been widely documented. However, the full physiological and molecular relevance of this role remains unclear. To gain further insights into the regulation system of CTK repression of Pi-starvation signalling, a global analysis of gene expression events in rice(More)
Studies on some plant species have shown that increasing the growth temperature gradually or pretreating with high temperature can lead to obvious photosynthetic acclimation to high temperature. To test whether this acclimation arises from heat adaptation of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activation mediated by(More)
Phenolic compounds arise from the shikimic and acetic acid (polyketide) metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines(More)
Phosphorus (P) is crucial nutrient element for crop growth and development. However, the network pathway regulating homeostasis of phosphate (Pi) in crops has many molecular breeding unknowns. Here, we report that an auxin response factor, OsARF12, functions in Pi homeostasis. Measurement of element content, quantitative reverse transcription polymerase(More)
Rice xylanase inhibitor RIXI is a XIP-type inhibitor that belongs to the glycoside hydrolase family 18 (GH18), which includes plant class III chitinases (EC 3.2.1.14) known as PR-8 proteins. The aim of this study was to elucidate whether RIXI had any effect on rice endoxylanase and its role(s) in plant defence. RIXI encoding sequence was cloned from rice(More)
Growth, photosynthetic gas exchange, and chlorophyll fluorescence characteristics were investigated in wild type (WT) and Cd-sensitive mutant rice (Oryza sativa L.) plants using 50 µM Cd treatment for 12 d followed by a 3-d recovery. Under Cd stress, net dry mass and pigment contents were significantly lower in the mutant plants than in the WT. The mutant(More)