De-Pei Liu

Hou-Zao Chen14
De-Long Hao8
Zhu-Qin Zhang6
14Hou-Zao Chen
8De-Long Hao
6Zhu-Qin Zhang
Learn More
Angiotensin II (AngII) induces the development of vascular hypertrophy and hypertension. We have shown previously that overexpression of class III deacetylase SIRT1 inhibits AngII-induced hypertrophy in vascular smooth muscle cells (VSMCs). However, the direct role of SIRT1 in VSMCs in response to AngII infusion in vivo remains unclear. Here, we found that(More)
Matrix attachment regions (MARs) are important in chromatin organization and gene regulation. Although it is known that there are a number of MAR elements in the beta-globin gene cluster, it is unclear that how these MAR elements are involved in regulating beta-globin genes expression. Here, we report the identification of a new MAR element at the LCR(More)
BACKGROUND Development in higher eukaryotes involves programmed gene expression. Cell type-specific gene expression is established during this process and is inherited in succeeding cell cycles. Higher eukaryotes have evolved elegant mechanisms by which committed gene-expression states are transmitted through numerous cell divisions. Previous studies have(More)
Targeted gene repair mediated by single-stranded oligonucleotides (SSOs) has great potential for use in functional genomic studies and gene therapy. Genetic changes have been created using this approach in a number of prokaryotic and eukaryotic systems, including mouse embryonic stem cells. However, the underlying mechanisms remain to be fully established.(More)
One of the foremost challenges in the post-genomic era will be to chart the gene regulatory networks of cells, including aspects such as genome annotation, identification of cis-regulatory elements and transcription factors, information on protein-DNA and protein-protein interactions, and data mining and integration. Some of these broad sets of data have(More)
Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact(More)
Stroke is a leading global cause of mortality and disability. Less than 5% of patients are able to receive tissue plasminogen activator thrombolysis within the necessary timeframe. Focusing on the process of neuronal apoptosis in the penumbra, which lasts from hours to days after ischaemia, appears to be promising. Here we report that tumour necrosis factor(More)
Myofibrillogenesis regulator-1 (MR-1) augments cardiomyocytes hypertrophy induced by angiotensin II (Ang II) in vitro. However, its roles in cardiac hypertrophy in vivo remain unknown. Here, we investigate whether MR-1 can promote cardiac hypertrophy induced by Ang II in vivo and elucidate the molecular mechanisms of MR-1 on cardiac hypertrophy. We used a(More)
Genome-wide comparisons indicate that only studying the coding regions will not be enough for explaining the biological complexity of an organism, while the genetic variants and the epigenetic differences of cis-regulatory elements are crucial to elucidate many complicated biological phenomena. Their various regulatory functions also play indispensable(More)
  • May E. Montasser, Lawrence C. Shimmin, Dongfeng Gu, Jing Chen, Charles Gu, Tanika N. Kelly +10 others
  • 2014
Chronic kidney disease (CKD) can be a consequence of diabetes, hypertension, immunologic disorders, and other exposures, as well as genetic factors that are still largely unknown. Glomerular filtration rate (GFR), which is widely used to measure kidney function, has a heritability ranging from 25% to 75%, but only 1.5% of this heritability is explained by(More)