De-Liang Kong

Learn More
The effects of global change factors on the stoichiometric composition of green and senesced plant tissues are critical determinants of ecosystem feedbacks to anthropogenic-driven global change. So far, little is known about species stoichiometric responses to these changes. We conducted a manipulative field experiment with nitrogen (N; 17.5 g m−2 year−1)(More)
Growing evidence has revealed high heterogeneity of fine root networks in both structure and function, with different root orders corporately maintaining trees' physiological activities. However, little information is available on how fine root heterogeneity of trees responds to environmental stresses. We examined concentrations of seven potentially toxic(More)
We conducted a field-manipulated experiment to assess whether changes in precipitation and nitrogen (N) deposition alter ecosystem carbon (C) and N storage. Both C and N pools of plant and soil were monitored when urea-N (17.5 g N m−2) and water (increasing mean annual precipitation by 50%) were added to a temperate steppe. After 2 years of treatments, both(More)
Increased atmospheric nitrogen (N) deposition and altered precipitation regimes have profound impacts on ecosystem functioning in semiarid grasslands. The interactions between those two factors remain largely unknown. A field experiment with N and water additions was conducted in a semiarid grassland in northern China. We examined the responses of(More)
Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese(More)
  • 1