Dayton L. Jones

Learn More
The loss of organic and inorganic carbon from roots into soil underpins nearly all the major changes that occur in the rhizosphere. In this review we explore the mechanistic basis of organic carbon and nitrogen flow in the rhizosphere. It is clear that C and N flow in the rhizosphere is extremely complex, being highly plant and environment dependent and(More)
The aim of the study was to investigate the ability of intact Zea mays. L. roots to regulate the amount of free amino-acids present in the rhizosphere. Using metabolic inhibitors it was demonstrated that the release of amino-acids from the root occurred by passive diffusion, whilst free amino-acids outside the root could be re-captured by an active(More)
Biochar has been shown to aid soil fertility and crop production in some circumstances. We investigated effects of the addition of Jarrah (Eucalyptus marginata) biochar to a coarse textured soil on soil carbon and nitrogen dynamics. Wheat was grown for 10 weeks, in soil treated with biochar (0, 5, or 25 t ha−1) in full factorial combination with nitrogen(More)
[1] Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential(More)
 Amino acids and proteins typically form the biggest input of organic-N into most soils and provide a readily available source of C and N for soil microorganisms. Amino acids can also be taken up directly by plant roots, providing an alternative source of available soil N. However, the degree to which plants can compete against the soil microbial population(More)
Organic acids have been hypothesized to perform many functions in soil including root nutrient acquisition, mineral weathering, microbial chemotaxis and metal detoxification. However, their role in most of these processes remains unproven due to a lack of fundamental understanding about the reactions of organic acids in soil. This review highlights some of(More)
Honey mesquite (Prosopis glandulosa Torr.) canopy responses to fire were measured following 20 single winter fires conducted in north Texas. Weather conditions during the fires, understory herbaceous fine fuel (fine fuel) amount and moisture content, fire temperature at 0 cm, 10-30 cm and 1-3 m above ground, and canopy responses were compared. Ten fires(More)
An investigation was carried out to assess the potential of using polysulfone hollow fibres for the extraction of soil solution. In comparison to ceramic suction samplers the fibres were shown to contain very low levels of potential contaminants and a low exchange capacity. Carry over between individual samples was negligible permitting the accurate(More)
The re-sorption of carbon compounds from the rhizosphere was investigated using 14C-labelled glucose, mannose and citric acid. Uptake in roots of 5-day-old, intact Zea mays plants in sterile solution culture was determined over a period of 48 hours. Under optimal growth conditions significant re-absorption of glucose and mannose occurred with the uptake(More)
Simple compounds in soil such as organic acids, amino acids and monosaccharides are believed to be important in regulating many aspects of terrestrial ecosystem functioning (e.g. C cycling, nutrient acquisition). Understanding the fate and dynamics of these low molecular weight (MW) compounds is therefore essential for predicting ecosystem responses to(More)