Dayong Jin

Wenhui Lou7
Dansong Wang6
Yefei Rong6
7Wenhui Lou
6Dansong Wang
Learn More
The prognosis for pancreatic cancer is very poor, and developing new therapeutic strategies for this cancer is needed. Recently, the Warburg effect (aerobic glycolysis) has attracted much attention for its function in the tumorigenesis. Lactate dehydrogenase A (LDHA) executes the final step of aerobic glycolysis and has been reported to be involved in the(More)
BACKGROUND Granulocytic sarcoma (GS) is a form of acute myeloid leukemia (AML), also known as extramedullary myeloid tumor or chloroma. It forms a solid malignant tumor consisting of myelocytes or granulocytes and is typically located in bone while occurrence in other parts of the body is rare. CASE PRESENTATION We reported a 40-year-old male patient who(More)
Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called 'τ-Dots'. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is(More)
Pancreatic cancer is one of the most malignant diseases in the world. Interferon regulator factor 2 (IRF-2), an interferon regulatory factor, has been known to act as an oncogene in distinct types of cancer. In this study, we found that the expression of IRF-2 was up-regulated in primary pancreatic cancer samples and associated with tumor size,(More)
BACKGROUND Pancreatic cancer is a common, highly lethal disease with a rising incidence. MUC1 is a tumor-associated antigen that is over-expressed in pancreatic adenocarcinoma. Active immunotherapy that targets MUC1 could have great treatment value. Here we investigated the preventive and therapeutic effect of a MUC1 DNA vaccine on the pancreatic cancer. (More)
In this report, a Ti:Sapphire oscillator was utilized to realize synchronization-free stimulated emission depletion (STED) microscopy. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. With synchronization-free STED, we imaged 200 nm nanospheres as well as all three cytoskeletal elements (microtubules,(More)
We report a new development of orthogonal scanning automated microscopy (OSAM) incorporating time-gated detection to locate rare-event organisms regardless of autofluorescent background. The necessity of using long-lifetime (hundreds of microseconds) luminescent biolabels for time-gated detection implies long integration (dwell) time, resulting in slow scan(More)
BACKGROUND Primary small cell carcinoma of the pancreas (SCCP) is a rare malignancy with an extremely poor prognosis which accounts for 1 to 1.4 percent of all pancreatic malignancies. CASE PRESENTATION We present the case of a 62-year-old man with a half-month history of upper abdominal discomfort who was diagnosed with SCC of the pancreatic tail. A(More)
A facile, but effective, method has been developed for large-scale preparation of NaLa(MoO4)2 nanorods and microflowers co-doped with Eu(3+) and Tb(3+) ions (abbreviated as: NLM:Ln(3+)). The as-synthesized nanomaterials possess a pure tetragonal phase with variable morphologies from shuttle-like nanorods to microflowers by controlling the reaction(More)
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized(More)