Daymi M. Camejo

Learn More
Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS) production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are(More)
Mitochondria play an essential role in reactive oxygen species (ROS) signal transduction in plants. Redox regulation is an essential feature of mitochondrial function, with thioredoxin (Trx), involved in disulphide/dithiol interchange, playing a prominent role. To explore the participation of mitochondrial PsTrxo1, Mn-superoxide dismutase (Mn-SOD),(More)
The present study was carried out to investigate the role of reactive oxygen species (ROS) metabolism in symptom development and pathogenesis in Nicotiana benthamiana plants upon infection with two strains of Pepper mild mottle virus, the Italian (PMMoV-I) and the Spanish (PMMoV-S) strains. In this host, it has been shown that PMMoV-I is less virulent and(More)
Together with thioredoxins (Trxs), plant peroxiredoxins (Prxs), and sulfiredoxins (Srxs) are involved in antioxidant defense and redox signaling, while their regulation by post-translational modifications (PTMs) is increasingly regarded as a key component for the transduction of the bioactivity of reactive oxygen and nitrogen species. Among these PTMs,(More)
Corticotropin-releasing factor (CRF) acts as neuro-regulator of the behavioral and emotional integration of environmental and endogenous stimuli associated with drug dependence. Thioredoxin-1 (Trx-1) is a functional protein controlling the redox status of several proteins, which is involved in addictive processes. In the present study, we have evaluated the(More)
S-nitrosylation is emerging as a key post-translational protein modification for the transduction of NO as a signaling molecule in plants. This data article supports the research article entitled "Functional and structural changes in plant mitochondrial PrxII F caused by NO" [1]. To identify the Cys residues of the recombinant PrxII F modified after the(More)
Alfalfa (Medicago sativa L.) roots were treated with 50 and 100 μg cm−3 of oligogalacturonide (OGA) solutions with a degree of polymerization between 7 and 15. Changes in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) as(More)
  • 1