Learn More
Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is(More)
Many woody perennials, such as poplar (Populus deltoides), are not able to form flower buds during the first several years of their life cycle. They must undergo a transition from the juvenile phase to the reproductive phase to be competent to produce flower buds. After this transition, trees begin to form flower buds in the spring of each growing season.(More)
BACKGROUND Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural(More)
Induced plant defenses in response to herbivore attack are modulated by cross-talk between jasmonic acid (JA)- and salicylic acid (SA)-signaling pathways. Oral secretions from some insect herbivores contain effectors that overcome these antiherbivore defenses. Herbivores possess diverse microbes in their digestive systems and these microbial symbionts can(More)
Two variants of creeping bentgrass (Agrostis stolonifera cv palustris), developed using tissue culture, have been used to determine the roles of chloroplast-localized small heat shock proteins (CP-sHSPs) in heat tolerance. Results from previous research indicate that the heat-tolerant variant expressed two additional CP-sHSP isoforms not expressed in the(More)
Plants respond to insect feeding with a number of defense mechanisms. Using maize genotypes derived from Antiquan germ plasm that are resistant to Lepidoptera, we have demonstrated that a unique 33-kD cysteine proteinase accumulates in the whorl in response to larval feeding. The abundance of the proteinase increased dramatically at the site of larval(More)
Insect oviposition on plants frequently precedes herbivory. Accumulating evidence indicates that plants recognize insect oviposition and elicit direct or indirect defenses to reduce the pressure of future herbivory. Most of the oviposition-triggered plant defenses described thus far remove eggs or keep them away from the host plant or their desirable(More)
Plants frequently respond to herbivorous insect attack by synthesizing defense proteins that deter insect feeding and prevent additional herbivory. Maize (Zea mays L.) lines, resistant to feeding by a number of lepidopteran species, rapidly mobilize a unique 33-kDa cysteine protease in response to caterpillar feeding. The accumulation of the 33-kDa cysteine(More)
The ability of caterpillar or moth 'footsteps' to elicit defenses in the tomato (Solanum lycopersicum) plant was examined. Although touch responses frequently have been observed in plants, the role of herbivore 'touch' in eliciting antiherbivore defenses has not been adequately examined. A combination of methods, including in situ hybridization, reverse(More)
This study was conducted to determine if constitutive levels of jasmonic acid (JA) and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests. The resistant inbred Mp708 had approximately 3-fold higher levels of jasmonic acid (JA)(More)