Learn More
Android has been a major target of malicious applications (malapps). How to detect and keep the malapps out of the app markets is an ongoing challenge. One of the central design points of Android security mechanism is permission control that restricts the access of apps to core facilities of devices. However, it imparts a significant responsibility to the(More)
In nature, metalloporphyrins are well known for performing many biological functions in aqueous media, such as light harvesting, oxygen transportation, and catalysis. Heme, the iron–porphyrin derivative, is the cofactor for many enzyme/ protein families, including peroxidases, cytochromes, hemo-globins, and myoglobins. [1] Using synthetic systems to mimic(More)
A reaction between a Zr(IV) salt and a porphyrinic tetracarboxylic acid leads to a metal-organic framework (MOF) with two types of open channels, representing a MOF featuring a (4,8)-connected sqc net. The MOF remains intact in both boiling water and aqueous solutions with pH ranging from 1 to 11, a remarkably extensive pH range that a MOF can sustain.(More)
Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed(More)
A series of highly stable MOFs with 3-D nanochannels, namely PCN-224 (no metal, Ni, Co, Fe), have been assembled with six-connected Zr6 cluster and metalloporphyrins by a linker-elimination strategy. The PCN-224 series not only exhibits the highest BET surface area (2600 m(2)/g) among all the reported porphyrinic MOFs but also remains intact in pH = 0 to pH(More)
Through a kinetically controlled synthetic process, we synthesized PCN-223, a new porphyrinic Zr-MOF constructed from the newly reported hexagonal prismatic 12-connected Zr6 cluster through an unusual disordered arrangement, giving rise to the first example of the shp-a network in MOFs. With its extremely high connectivity, PCN-223 shows high stability in(More)
Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal-organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach,(More)
Through a topology-guided strategy, a series of Zr6-containing isoreticular porphyrinic metal-organic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased(More)
Through topological rationalization, a zeotype mesoporous Zr-containing metal-organic framework (MOF), namely PCN-777, has been designed and synthesized. PCN-777 exhibits the largest cage size of 3.8 nm and the highest pore volume of 2.8 cm(3)  g(-1) among reported Zr-MOFs. Moreover, PCN-777 shows excellent stability in aqueous environments, which makes it(More)