Davide Seruggia

Learn More
The CRISPR–Cas system is the newest targeted nuclease for genome engineering. In less than 1 year, the ease, robustness and efficiency of this method have facilitated an immense range of genetic modifications in most model organisms. Full and conditional gene knock-outs, knock-ins, large chromosomal deletions and subtle mutations can be obtained using(More)
Conditional mutagenesis using Cre recombinase expressed from tissue specific promoters facilitates analyses of gene function and cell lineage tracing. Here, we describe two novel dual-promoter-driven conditional mutagenesis systems designed for greater accuracy and optimal efficiency of recombination. Co-Driver employs a recombinase cascade of Dre and(More)
Newly developed genome-editing tools, such as the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, allow simple and rapid genetic modification in most model organisms and human cell lines. Here, we report the production and analysis of mice carrying the inactivation via deletion of a genomic insulator, a key non-coding(More)
Herein, we study the nanomechanical characteristics of single DNA molecules in the presence of DNA binders, including intercalating agents (ethidium bromide and doxorubicin), a minor groove binder (netropsin) and a typical alkylating damaging agent (cisplatin). We have used magnetic tweezers manipulation techniques, which allow us to measure the contour and(More)
Genomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of(More)
  • 1