Learn More
We propose a semi-direct monocular visual odometry algorithm that is precise, robust, and faster than current state-of-the-art methods. The semi-direct approach eliminates the need of costly feature extraction and robust matching techniques for motion estimation. Our algorithm operates directly on pixel intensities, which results in subpixel precision at(More)
Visual odometry (VO) is the process of estimating the egomotion of an agent (e.g., vehicle, human, and robot) using only the input of a single or If multiple cameras attached to it. Application domains include robotics, wearable computing, augmented reality, and automotive. The term VO was coined in 2004 by Nister in his landmark paper. The term was chosen(More)
In this paper, we present a novel technique for calibrating central omnidirectional cameras. The proposed procedure is very fast and completely automatic, as the user is only asked to collect a few images of a checker board, and click on its corner points. In contrast with previous approaches, this technique does not use any specific model of the(More)
In this paper, we present a flexible new technique for single viewpoint omnidirectional camera calibration. The proposed method only requires the camera to observe a planar pattern shown at a few different orientations. Either the camera or the planar pattern can be freely moved. No a priori knowledge of the motion is required, nor a specific model of the(More)
Autonomous micro aerial vehicles (MAVs) will soon play a major role in tasks such as search and rescue, environment monitoring, surveillance, and inspection. They allow us to easily access environments to which no humans or other vehicles can get access. This reduces the risk for both the people and the environment. For the above applications, it is,(More)
This paper presents a system capable of recovering the trajectory of a vehicle from the video input of a single camera at a very high frame-rate. The overall frame-rate is limited only by the feature extraction process, as the outlier removal and the motion estimation steps take less than 1 millisecond with a normal laptop computer. The algorithm relies on(More)
This paper presents a new method to estimate the relative motion of a vehicle from images of a single camera. The computational cost of the algorithm is limited only by the feature extraction and matching process, as the out-lier removal and the motion estimation steps take less than a fraction of millisecond with a normal laptop computer. The biggest(More)
We study the problem of perceiving forest or mountain trails from a single monocular image acquired from the viewpoint of a robot traveling on the trail itself. Previous literature focused on trail segmentation, and used low-level features such as image saliency or appearance contrast; we propose a different approach based on a deep neural network used as a(More)
The fusion of inertial and visual data is widely used to improve an object's pose estimation. However, this type of fusion is rarely used to estimate further unknowns in the visual framework. In this paper we present and compare two different approaches to estimate the unknown scale parameter in a monocular SLAM framework. Directly linked to the scale is(More)