Learn More
Adenosine, by acting on adenosine A(1) and A(2A) receptors, exerts opposite modulatory roles on striatal extracellular levels of glutamate and dopamine, with activation of A(1) inhibiting and activation of A(2A) receptors stimulating glutamate and dopamine release. Adenosine-mediated modulation of striatal dopaminergic neurotransmission could be secondary(More)
The gut-hormone ghrelin endogenously binds to the ghrelin receptor (GHS-R) to promote foraging and feeding behaviours mainly via the hypothalamic arcuate nucleus (ARC). GHS-Rs are also expressed in midbrain dopaminergic neurons of the ventral tegmental area (VTA) suggesting that ghrelin may modulate the mesolimbic dopamine (DA) system. In support of this(More)
The contribution of blockade of adenosine A1 and A2A receptor to the psychostimulant effects of caffeine is still a matter of debate. When analyzing motor activity in rats, acutely administered caffeine shows a profile of a non-selective adenosine receptor antagonist, although with preferential A1 receptor antagonism. On the other hand, tolerance to the(More)
The hypothalamus is an integrated energy sensing system interfacing with higher motivational structures of the mesocorticolimbic dopamine (DA) system. This interconnectivity is strictly regulated by a number of orexigenic hypothalamic neuropeptides, including especially ghrelin, orexins and neuropeptide Y (NPY), enabling the latter to modulate salient(More)
In the striatum, dopamine and acetylcholine (ACh) modulate dopamine release by acting, respectively, on dopamine D(2) autoreceptors and nicotinic ACh (nACh) heteroreceptors localized on dopaminergic nerve terminals. The possibility that functional interactions exist between striatal D(2) autoreceptors and nACh receptors was studied with in vivo(More)
The involvement of adenosine A(1) and A(2A) receptors in the motor effects of caffeine is still a matter of debate. In the present study, counteraction of the motor-depressant effects of the selective A(1) receptor agonist CPA and the A(2A) receptor agonist CGS 21680 by caffeine, the selective A(1) receptor antagonist CPT, and the A(2A) receptor antagonist(More)
Distinct lines of evidence indicate that glutamate plays a primary role in modulating cognitive functions. Notably, competitive glutamate receptor antagonists acting at ionotropic N-methyl-d-aspartate (NMDA) or metabotropic glutamate 5 (mGlu5) receptors impair cognitive performance. Conversely, nicotine and other psychostimulants stimulate glutamatergic(More)
Preclinical evidence suggests an important role of the brain orexin system in behaviours related to drug addiction. This study aimed at assessing the effect of the orexin-1 receptor antagonist SB-334867 on aspects of psychostimulant-conditioned behaviours that are thought to contribute to the maintenance of and relapse to psychostimulant drug use. Rats were(More)
Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the(More)
Social defeat is an ethologically relevant stress inducing neuroadaptive changes in the mesocorticolimbic dopaminergic system. Three weeks after 10 days of daily defeat salient behaviors and in vivo dopamine (DA) neuron firing were evaluated in mice. Prior defeat induced social avoidance and hyperphagia and increased ventral tegmental area (VTA) DA neuron(More)