Learn More
Previous studies have demonstrated opposing roles for adenosine A1 and A2A receptors in the modulation of extracellular levels of glutamate and dopamine in the striatum. In the present study, acute systemic administration of motor-activating doses of the A2A receptor antagonist MSX-3 significantly decreased extracellular levels of dopamine and glutamate in(More)
Adenosine, by acting on adenosine A(1) and A(2A) receptors, exerts opposite modulatory roles on striatal extracellular levels of glutamate and dopamine, with activation of A(1) inhibiting and activation of A(2A) receptors stimulating glutamate and dopamine release. Adenosine-mediated modulation of striatal dopaminergic neurotransmission could be secondary(More)
The contribution of blockade of adenosine A1 and A2A receptor to the psychostimulant effects of caffeine is still a matter of debate. When analyzing motor activity in rats, acutely administered caffeine shows a profile of a non-selective adenosine receptor antagonist, although with preferential A1 receptor antagonism. On the other hand, tolerance to the(More)
The involvement of adenosine A(1) and A(2A) receptors in the motor effects of caffeine is still a matter of debate. In the present study, counteraction of the motor-depressant effects of the selective A(1) receptor agonist CPA and the A(2A) receptor agonist CGS 21680 by caffeine, the selective A(1) receptor antagonist CPT, and the A(2A) receptor antagonist(More)
The aim of the present study was to evaluate whether, and by means of which mechanisms, the adenosine A2A receptor antagonist SCH 58261 [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine] exerted neuroprotective effects in a rat model of Huntington's disease. In a first set of experiments, SCH 58261 (0.01 and 1 mg/kg) was(More)
RATIONALE Caffeine is a non-selective adenosine receptor antagonist in vitro, but involvement of different adenosine receptor subtypes, particularly adenosine A1 and A 2A receptors, in the central effects of caffeine remains a matter of debate. OBJECTIVE Investigate the role of adenosine A1 and A 2A receptors in the discriminative-stimulus effects of(More)
Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the(More)
Social defeat is an ethologically relevant stress inducing neuroadaptive changes in the mesocorticolimbic dopaminergic system. Three weeks after 10 days of daily defeat salient behaviors and in vivo dopamine (DA) neuron firing were evaluated in mice. Prior defeat induced social avoidance and hyperphagia and increased ventral tegmental area (VTA) DA neuron(More)
The intrastriatal perfusion of the selective metabotropic glutamate (mGlu)5 receptor agonist (RS)-2-chloro-5-hydroxy-phenylglycine (CHPG, 1000 microM) significantly increased (approximately + 100%, p < 0.05) glutamate extracellular levels with respect to basal values. The potentiating effect of CHPG was prevented by the selective mGlu5 receptor antagonist(More)
In the striatum, dopamine and acetylcholine (ACh) modulate dopamine release by acting, respectively, on dopamine D(2) autoreceptors and nicotinic ACh (nACh) heteroreceptors localized on dopaminergic nerve terminals. The possibility that functional interactions exist between striatal D(2) autoreceptors and nACh receptors was studied with in vivo(More)