Learn More
BACKGROUND Hyperglycemia impairs functional properties of cytosolic and nuclear proteins via O-linked glycosylation modification (O-GlcNAcylation). We studied the effects of O-GlcNAcylation on insulin signaling in human coronary artery endothelial cells. METHODS AND RESULTS O-GlcNAcylation impaired the metabolic branch of insulin signaling, ie, insulin(More)
Insulin receptor substrate (IRS) molecules are key mediators in insulin signaling and play a central role in maintaining basic cellular functions such as growth, survival, and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members(More)
Insulin receptors (IR) and type 1 IGF receptors (IGF-IR) have been shown to form insulin/IGF-I hybrid receptors in tissues expressing both molecules. The biological function of hybrid receptors is still undefined. To date there is no information about the distribution of hybrid receptors in human tissues. We have applied two microwell-based immunoassays(More)
The insulin receptor (IR) is a protein tyrosine kinase playing a pivotal role in the regulation of peripheral glucose metabolism and energy homoeostasis. IRs are also abundantly distributed in the cerebral cortex and hippocampus, where they regulate synaptic activity required for learning and memory. As the major anabolic hormone in mammals, insulin(More)
Dysfunction of mature endothelial cells is thought to play a major role in both micro- and macrovascular complications of diabetes. However, recent advances in biology of endothelial progenitor cells (EPCs) have highlighted their involvement in diabetes complications. To determine the effect of glucotoxicity on EPCs, human EPCs have been isolated from(More)
ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3(-/-) mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3(-/-) mice compared to WT, along with(More)
Aspirin modestly influences cardiovascular events in patients with type 2 diabetes mellitus (T2DM), but the reason is unclear. The aim of the study was to determine whether in T2DM patients aspirin enhances platelet isoprostanes, which are eicosanoids with proaggregating properties derived from arachidonic acid oxidation by platelet NOX2, the catalytic(More)
BACKGROUND In type 1 diabetes (T1D) vascular complications such as accelerated atherosclerosis and diffused macro-/microangiopathy are linked to chronic hyperglycemia with a mechanism that is not yet well understood. End-stage renal disease (ESRD) worsens most diabetic complications, particularly, the risk of morbidity and mortality from cardiovascular(More)
BACKGROUND Impaired insulin-mediated vasodilation might contribute to vascular damage in insulin-resistant states. Little is known about insulin regulation of nitric oxide (NO) synthesis in insulin-resistant cells. The aim of this work was to investigate insulin regulation of NO synthesis in human umbilical vein endothelial cells (HUVECs) carrying the IRS-1(More)
BACKGROUND Metabolic syndrome importantly accelerates the atherosclerotic process, the earliest event of which is endothelial dysfunction. Ghrelin, a gastric peptide with cardiovascular actions, has been shown to inhibit proatherogenic changes in experimental models. This study therefore investigated whether ghrelin administration might beneficially affect(More)