Davide Iannuzzi

Learn More
The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of micro- and nanoelectromechanical systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the(More)
In a recent paper [D.Chavan et al., Rev. Sci. Instrum. 81, 123702 (2010)] we have demonstrated that ferrule-top cantilevers, obtained by carving the end of a ferruled fiber, can be used for contact mode atomic force microscopy in ambient conditions. Here we show that those probes can provide tapping mode images at both room and cryogenic temperatures (12 K).
This work is an extended version of a paper published previously [S. de Man et al., Phys. Rev. Lett. 103, 040402 (2009)], where we presented measurements of the Casimir force between a gold-coated sphere and a plate coated with either gold or an indium tin oxide (I TO) layer. The experiment, which was performed in air, showed that I TO conducts sufficiently(More)
In a recent paper (Iannuzzi et al 2006 Monolithic fiber-top sensor for critical environments and standard applications Appl. Phys. Lett. 88 053501) we have presented the principle of the fiber-top position sensor, having a monolytical structure carved out of a single-mode optical fiber. The device alleviates sensing in a critical environment via(More)
Ferrule-top cantilevers are a new generation of all-optical miniaturized devices for utilization in liquids, harsh environments, and small volumes [G. Gruca et al., Meas. Sci. Technol. 21, 094033 (2010)]. They are obtained by carving the end of a ferruled fiber in the form of a mechanical beam. Light coupled from the opposite side of the fiber allows(More)
Ferrule-top probes are self-aligned all-optical devices obtained by fabricating a cantilever on the top of a ferruled optical fiber. This approach has been proven to provide a new platform for the realization of small footprint atomic force microscopes (AFMs) that adapt well to utilization outside specialized laboratories [D. Chavan et al., Rev. Sci.(More)
We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy given sufficient computational resources . Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit(More)
We have performed measurements of the Casimir force between a metallic plate and a transparent sphere coated with metallic films of different thicknesses. We have observed that, if the thickness of the coating is less than the skin-depth of the electromagnetic modes that mostly contribute to the interaction, the force is significantly smaller than that(More)
Taking inspiration from conventional top-down micromachining techniques, we have fabricated a low mass gold fiber-top cantilever via align-and-shine photolithography. The cantilever is characterized by measuring its resonance frequency and mechanical quality factor. Our results show that the device grants mass sensitivity comparable to that reported for(More)
We present a method of computing Casimir forces for arbitrary geometries, with any desired accuracy, that can directly exploit the efficiency of standard numerical-electromagnetism techniques. Using the simplest possible finite-difference implementation of this approach, we obtain both agreement with past results for cylinder-plate geometries, and also(More)