Learn More
High-resolution electron energy loss spectroscopy has been used to study the electronic response of periodically rippled monolayer graphene grown on Ru(0001). A plasmonic mode, assigned to the π plasmon, has been observed at around 6 eV. The dispersion curve of this collective mode indicates plasmon confinement within the hills of the ripples. Moreover, we(More)
By means of a combination of surface-science spectroscopies and theory, we investigate the mechanisms ruling the catalytic role of epitaxial graphene (Gr) grown on transition-metal substrates for the production of hydrogen from water. Water decomposition at the Gr/metal interface at room temperature provides a hydrogenated Gr sheet, which is buckled and(More)
The Ge2Sb2Te5 compound is of interest for applications in phase change non-volatile memories. First-principles calculations of phonon dispersion relations and electron-phonon coupling constant provide an estimate of the electron-phonon contribution to the thermal boundary resistance at the interfaces of Ge2Sb2Te5 with dielectrics (silica) and metal(More)
The structural defects in two-dimensional transition metal dichalcogenides, including point defects, dislocations and grain boundaries, are scarcely considered regarding their potential to manipulate the electrical and optical properties of this class of materials, notwithstanding the significant advances already made. Indeed, impurities and vacancies may(More)
A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and(More)
Using reflection high-energy electron diffraction (RHEED), the growth onset of molecular beam epitaxy (MBE) deposited germanium telluride (GeTe) film on Si(111)-(√3 × √3)R30°-Sb surfaces is investigated, and a larger than expected in-plane lattice spacing is observed during the deposition of the first two molecular layers. High-resolution transmission(More)
The interplay of the librations of a covalently bound organic adlayer with the lattice waves of an underlying semiconductor surface was characterized using helium atom scattering in conjunction with analysis by density functional perturbation theory. The Rayleigh wave dispersion relation of CH3- and CD3-terminated Si(111) surfaces was probed across the(More)
The quasi two-dimensional electron gas on a metal film can transmit to the surface even minute mechanical disturbances occurring in the depth, thus allowing the gentlest of all surface probes, helium atoms, to perceive the vibrations of the deepest atoms via the induced surface-charge density oscillations. A density functional perturbation theory (DFPT) and(More)
A combined helium atom scattering and density functional perturbation theory study has been performed to elucidate the surface phonon dispersion relations for both the CH3-Si(111)-(1 × 1) and CD3-Si(111)-(1 × 1) surfaces. The combination of experimental and theoretical methods has allowed characterization of the interactions between the low energy(More)
We discuss experimental results that demonstrate all-optical switching and pulse-routing functionality, at 1.55 um, of nonlinear multiple-quantum-well waveguides equipped with a Bragg grating. Basing on the nonlinear Time-Domain Beam Propagation Method, the switching behavior has been theoretically investigated using a model, developed as part of this work.