Learn More
The identification of the whole set of protein interactions taking place in an organism is one of the main tasks in genomics, proteomics and systems biology. One of the computational techniques used by many investigators for studying and predicting protein interactions is the comparison of evolutionary histories (phylogenetic trees), under the hypothesis(More)
The EcID database (Escherichia coli Interaction Database) provides a framework for the integration of information on functional interactions extracted from the following sources: EcoCyc (metabolic pathways, protein complexes and regulatory information), KEGG (metabolic pathways), MINT and IntAct (protein interactions). It also includes information on(More)
Interacting or functionally related protein families tend to have similar phylogenetic trees. Based on this observation, techniques have been developed to predict interaction partners. The observed degree of similarity between the phylogenetic trees of two proteins is the result of many different factors besides the actual interaction or functional(More)
The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous(More)
Chemokines coordinate leukocyte trafficking by promoting oligomerization and signaling by G protein-coupled receptors; however, it is not known which amino acid residues of the receptors participate in this process. Bioinformatic analysis predicted that Ile52 in transmembrane region-1 (TM1) and Val150 in TM4 of the chemokine receptor CCR5 are key residues(More)
Computational methods for predicting protein interaction partners are becoming increasingly popular. Many of them are mature enough to be widely used by molecular biologists who can look for proteins related to the protein of interest in order to infer information about its context in the cell. In this chapter we describe the use of the mirrortree set of(More)
Determining the full complement of protein-coding genes is a key goal of genome annotation. The most powerful approach for confirming protein-coding potential is the detection of cellular protein expression through peptide mass spectrometry (MS) experiments. Here, we mapped peptides detected in seven large-scale proteomics studies to almost 60% of the(More)
MOTIVATION The evolution of proteins cannot be fully understood without taking into account the coevolutionary linkages entangling them. From a practical point of view, coevolution between protein families has been used as a way of detecting protein interactions and functional relationships from genomic information. The most common approach to inferring(More)
The TreeDet (Tree Determinant) Server is the first release of a system designed to integrate results from methods that predict functional sites in protein families. These methods take into account the relation between sequence conservation and evolutionary importance. TreeDet fully analyses the space of protein sequences in either user-uploaded or(More)