Learn More
We demonstrate that using metallic tips for noncontact atomic force microscopy (NC-AFM) imaging at relatively large (>0.5 nm) tip-surface separations provides a reliable method for studying molecules on insulating surfaces with chemical resolution and greatly reduces the complexity of interpreting experimental data. The experimental NC-AFM imaging and(More)
Using density functional theory (DFT) calculations we demonstrate how electron injection can facilitate the creation of Frenkel defects in amorphous (a)-SiO2. The precursor sites composed of wide O-Si-O bond angles in amorphous SiO2 act as deep electron traps and can accommodate up to two extra electrons. Trapping of two electrons at these intrinsic sites(More)
Non-contact Atomic ForceMicroscopy (NC-AFM) is an experimental technique capable of imaging almost any surface with atomic resolution, in a wide variety of environments. Linking measured images to real understanding of system properties is often difficult, and many studies combine experiments with detailedmodelling, in particular using virtual simulators to(More)
We present an efficient scheme for parametrizing complex molecule-surface force fields from ab initio data. The cost of producing a sufficient fitting library is mitigated using a 2D periodic embedded slab model made possible by the quantum mechanics/molecular mechanics scheme in CP2K. These results were then used in conjunction with genetic algorithm (GA)(More)
Using density functional theory (DFT) calculations, we investigated oxygen vacancy diffusion and aggregation in relation to dielectric breakdown in amorphous silicon dioxide (a-SiO2). Our calculations indicate the existence of favourable sites for the formation of vacancy dimers and trimers in the amorphous network with maximum binding energies of(More)
We apply a three-dimensional (3D) physical simulator, coupling self-consistently stochastic kinetic Monte Carlo descriptions of ion and electron transport, to investigate switching in silicon-rich silica (SiO<sub>x</sub>) redox-based resistive random-access memory (RRAM) devices. We explain the intrinsic nature of resistance switching of the SiO<sub>x</sub>(More)
Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate(More)
The challenges and limitations in calculating free energies and entropies of adsorption and interaction of organic molecules on an insulating substrate are discussed. The adhesion of 1,3,5-tri(4'-cyano-[1,1'-biphenyl]-4-yl)benzene (TCB) and 1,4-bis(4-cyanophenyl)-2,5-bis(decyloxy)benzene (CDB) molecules to step edges on the KCl(001) surface and the(More)
  • 1