David Y. Weiss Solís

Learn More
Genomic data integration is a key goal to be achieved towards large-scale genomic data analysis. This process is very challenging due to the diverse sources of information resulting from genomics experiments. In this work, we review methods designed to combine genomic data recorded from microarray gene expression (MAGE) experiments. It has been acknowledged(More)
Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub. Having clear focus, flexibility and adaptability, InSilico DB seamlessly(More)
BACKGROUND Regions of protein sequences with biased amino acid composition (so-called Low-Complexity Regions (LCRs)) are abundant in the protein universe. A number of studies have revealed that i) these regions show significant divergence across protein families; ii) the genetic mechanisms from which they arise lends them remarkable degrees of compositional(More)
Microarray technology has become an integral part of biomedical research and increasing amounts of datasets become available through public repositories. However, re-use of these datasets is severely hindered by unstructured, missing or incorrect biological samples information; as well as the wide variety of preprocessing methods in use. The inSilicoDb(More)
With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools(More)
The potential of microarray gene expression (MAGE) data is only partially explored due to the limited number of samples in individual studies. This limitation can be surmounted by merging or integrating data sets originating from independent MAGE experiments, which are designed to study the same biological problem. However, this process is hindered by batch(More)
We describe the pioneering experience of a Spanish family pursuing the goal of understanding their own personal genetic data to the fullest possible extent using Direct to Consumer (DTC) tests. With full informed consent from the Corpas family, all genotype, exome and metagenome data from members of this family, are publicly available under a public domain(More)
Microarray technology has become an integral part of biomedical research and increasing amounts of datasets become available through public repositories. However, re-use of these datasets is severely hindered by unstructured, missing or incorrect biological samples information; as well as the wide variety of preprocessing methods in use. The inSilicoDb(More)
  • 1