David Y. Hollinger

Learn More
The Moderate Resolution Spectroradiometer (MODIS) sensor has provided near real-time estimates of gross primary production (GPP) since March 2000. We compare four years (2000 to 2003) of satellite-based calculations of GPP with tower eddy CO2 flux-based estimates across diverse land cover types and climate regimes. We examine the potential error(More)
Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed(More)
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because(More)
Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (GPP) of forests is affected by(More)
There is a need to document how plant phenology is responding to global change factors, particularly warming trends. "Near-surface" remote sensing, using radiometric instruments or imaging sensors, has great potential to improve phenological monitoring because automated observations can be made at high temporal frequency. Here we build on previous work and(More)
Understanding relationships between canopy structure and the seasonal dynamics of photosynthetic uptake of CO2 by forest canopies requires improved knowledge of canopy phenology at eddy covariance flux tower sites. We investigated whether digital webcam images could be used to monitor the trajectory of spring green-up in a deciduous northern hardwood(More)
Flux data are noisy, and this uncertainty is largely due to random measurement error. Knowledge of uncertainty is essential for the statistical evaluation of modeled and measured fluxes, for comparison of parameters derived by fitting models to measured fluxes and in formal data-assimilation efforts. We used the difference between simultaneous measurements(More)
The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing(More)
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual(More)
We review 15 techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on a set of 10 benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present(More)