David Wetherall

Learn More
To date, realistic ISP topologies have not been accessible to the research community, leaving work that depends on topology on an uncertain footing. In this paper, we present new Internet mapping techniques that have enabled us to directly measure router-level ISP topologies. Our techniques reduce the number of required traces compared to a brute-force,(More)
This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in tracing packets with incorrect, or ``spoofed'', source addresses. In this paper we describe a general purpose(More)
This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back toward their source. This work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in tracing packets with incorrect, or “spoofed,” source addresses. In this paper, we describe a general(More)
RSSI is known to be a fickle indicator of whether a wireless link will work, for many reasons. This greatly complicates operation because it requires testing and adaptation to find the best rate, transmit power or other parameter that is tuned to boost performance. We show that, for the first time, wireless packet delivery can be accurately predicted for(More)
We present a novel approach to building and deploying network protocols. The approach is based on mobile code, demand loading, and caching techniques. The architecture of our system allows new protocols to be dynamically deployed at both routers and end systems, without the need for coordination and without unwanted interaction between co-existing(More)
We present a technique for identifying repetitive information transfers and use it to analyze the redundancy of network traffic. Our insight is that dynamic content, streaming media and other traffic that is not caught by today's Web caches is nonetheless likely to derive from similar information. We have therefore adapted similarity detection techniques to(More)
We present practical models for the physical layer behaviors of packet reception and carrier sense with interference in static wireless networks. These models use measurements of a real network rather than abstract RF propagation models as the basis for accuracy in complex environments. Seeding our models requires N trials in an N node network, in which(More)
Active networks allow their users to inject customized programs into the nodes of the network. An extreme case, in which we are most interested, replaces packets with "capsules" -- program fragments that are executed at each network router/switch they traverse. Active architectures permit a massive increase in the sophistication of the computation that is(More)
It is well-known that simple, accidental BGP configuration errors can disrupt Internet connectivity. Yet little is known about the frequency of misconfiguration or its causes, except for the few spectacular incidents of widespread outages. In this paper, we present the first quantitative study of BGP misconfiguration. Over a three week period, we analyzed(More)