David Wan-Cheng Li

Learn More
AlphaA- and alphaB-crystallins are distinct antiapoptotic regulators. Regarding the antiapoptotic mechanisms, we have recently demonstrated that alphaB-crystallin interacts with the procaspase-3 and partially processed procaspase-3 to repress caspase-3 activation. Here, we demonstrate that human alphaA- and alphaB-crystallins prevent staurosporine-induced(More)
The ocular lens is the only organ that does not develop spontaneous tumor. The molecular mechanism for this phenomenon remains unknown. Through examination of the signaling pathways mediating stress-induced apoptosis, here we presented evidence to show that different from most other tissues in which the extracellular signal-regulated kinases (ERKs) pathway(More)
The proto-oncogene, bcl-2, has various functions besides its role in protecting cells from apoptosis. One of the functions is to regulate expression of other genes. Previous studies have demonstrated that Bcl-2 regulates activities of several important transcription factors including NF-kappaB and p53, and also their downstream genes. In our recent studies,(More)
PURPOSE The small GTPases function as "molecular switches" by binding and releasing GTP to mediate downstream signaling effects. The Rho-family of GTPases is central in modulating cell differentiation and cytoskeletal changes. Since eye development requires comprehensive morphogenetic movements and extensive cellular differentiation, we hypothesize that(More)
We have previously demonstrated that the serine/threonine protein phosphatase-1 (PP-1) plays an important role in promoting cell survival. However, the molecular mechanisms by which PP-1 promotes survival remain largely unknown. In the present study, we provide evidence to show that PP-1 can directly dephosphorylate a master regulator of apoptosis, p53, to(More)
AKT pathway has a critical role in mediating signaling transductions for cell proliferation, differentiation and survival. Previous studies have shown that AKT activation is achieved through a series of phosphorylation steps: first, AKT is phosphorylated at Thr-450 by JNK kinases to prime its activation; then, phosphoinositide-dependent kinase 1(More)
The ocular lens is a distinct system to study cell death for the following reasons. First, during animal development, the ocular lens is crafted into its unique shape. The crafting processes include cell proliferation, cell migration, and apoptosis. Moreover, the lens epithelial cells differentiate into lens fiber cells through a process, which utilizes the(More)
Telomerase is a specialized reverse transcriptase that extends telomeres of eukaryotic chromosomes. The catalytic core of human telomerase is composed of an RNA template known as hTER (human telomerase RNA) and a protein subunit named hTERT (human telomerase reverse transcriptase). We have been studying other functions of the telomerase besides its major(More)
Spider venom is a large pharmacological repertoire containing many biologically active peptides, which may have a potent therapeutic implication. Here we investigated a peptide toxin, named lycosin-I, isolated from the venom of the spider Lycosa singoriensis. In contrast to most spider peptide toxins adopting inhibitor cystine knot (ICK) motif, lycosin-I(More)
The involvement of H2O2 in cataract development has been established inboth human patients and animal models. At the molecular level H2O2 has beenobserved to cause damage to DNA, protein and lipid. To explore the oxidativestress response of the lens system at the gene expression level, we haveexamined the effects of H2O2 on the mRNA change of the(More)