Learn More
Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have(More)
The rock record provides us with unique evidence for testing models as to when and where cellular life first appeared on Earth. Its study, however, requires caution. The biogenicity of stromatolites and 'microfossils' older than 3.0 Gyr should not be accepted without critical analysis of morphospace and context, using multiple modern techniques, plus(More)
The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia-Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture(More)
Viruses are the most abundant biological entities throughout marine and terrestrial ecosystems, but little is known about virus-mineral interactions or the potential for virus preservation in the geological record. Here we use contextual metagenomic data and microscopic analyses to show that viruses occur in high diversity within a modern lacustrine(More)
The 3426-3350 Ma Strelley Pool Formation (SPF) is a silicified, dominantly sedimentary unit within the Pilbara Supergroup, Western Australia. It is found widely across the East Pilbara Terrane, and it forms a prominent marker horizon and separates the largely volcanic 3520-3427 Ma Warrawoona and 3350-3315 Ma Kelly groups. It has become one of the key(More)
Micron-sized cavities created by the actions of rock-etching microorganisms known as euendoliths are explored as a biosignature for life on early Earth and perhaps Mars. Rock-dwelling organisms can tolerate extreme environmental stresses and are excellent candidates for the colonization of early Earth and planetary surfaces. Here, we give a brief overview(More)
The context for the emergence of life on Earth sometime prior to 3.5 billion years ago is almost as big a puzzle as the definition of life itself. Hitherto, the problem has largely been addressed in terms of theoretical and experimental chemistry plus evidence from extremophile habitats like modern hydrothermal vents and meteorite impact structures. Here,(More)
Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion(More)
New analytical approaches and discoveries are demanding fresh thinking about the early fossil record. The 1.88-Ga Gunflint chert provides an important benchmark for the analysis of early fossil preservation. High-resolution analysis of Gunflintia shows that microtaphonomy can help to resolve long-standing paleobiological questions. Novel 3D nanoscale(More)
Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old(More)