David W Templeton

Learn More
As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have(More)
In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based(More)
New, rapid, and inexpensive methods that monitor the chemical composition of corn stover and corn stover-derived samples are a key element to enabling the commercialization of processes that convert stover to fuels and chemicals. These new techniques combine near infrared (NIR) spectroscopy and projection to latent structures (PLS) multivariate analysis to(More)
The most common procedures for characterizing the chemical components of lignocellulosic feedstocks use a two-stage sulfuric acid hydrolysis to fractionate biomass for gravimetric and instrumental analyses. The uncertainty (i.e., dispersion of values from repeated measurement) in the primary data is of general interest to those with technical or financial(More)
Biomass compositional methods are used to compare different lignocellulosic feedstocks, to measure component balances around unit operations and to determine process yields and therefore the economic viability of biomass-to-biofuel processes. Four biomass reference materials (RMs NIST 8491–8494) were prepared and characterized, via an interlaboratory(More)
Simultaneous saccharification and cofermentation (SSCF) was carried out at approximately 15% total solids using conditioned dilute-acid pretreated yellow poplar feedstock, an adapted variant of National Renewable Energy Laboratory (NREL) xylose-fermenting Zymomonas mobilis and either commercial or NREL-produced cellulase enzyme preparations. In 7 d, at a(More)
Structural carbohydrates can constitute a large fraction of the dry weight of algal biomass and thus accurate identification and quantification is important for summative mass closure. Two limitations to the accurate characterization of microalgal carbohydrates are the lack of a robust analytical procedure to hydrolyze polymeric carbohydrates to their(More)
A techno-economic sensitivity analysis was performed using a National Renewable Energy Laboratory (NREL) 2011 biochemical conversion design model varying feedstock compositions. A total of 496 feedstock near infrared (NIR) compositions from 47 locations in eight US Corn Belt states were used as the inputs to calculate minimum ethanol selling price (MESP),(More)
A new set of reverse ballistic experiments has been designed to overcome uncertainties in the interpretation of experimental data of two independent data sets that suggest the existence of a so–called "failure wave" for penetration into SiC-ceramics. The possible detection of such a phenomenon requires very high accuracy in experimental measurements. The(More)
Data for projectile penetration of SiC from two types of experiments were combined and analyzed in previous work. Analysis of the data suggested the presence of the so-called “failure wave” phenomenon, interpreted as the apparent increase in the strength of SiC when the penetration velocity exceeds some critical value. These data are used as the basis for(More)